精英家教网 > 初中数学 > 题目详情

已知反比例函数数学公式与一次函数图象交于P(-2,1)和Q(1,n)两点.
(1)求这两个函数的关系式;
(2)在同一直角坐标系内画出它们的图象;
(3)求△POQ的面积.

解:(1)把P(-2,1)代入y=得k=-2×1=-2,
∴反比例函数解析式为y=-
把Q(1,n)代入y=-得n=-2,
∴Q点坐标为(1,-2),
设一次函数的解析式为y=kx+b,
把P(-2,1),Q(1,-2)分别代入得,解得
∴一次函数的解析式为y=-x-1;
(2)如图,
(3)对于y=-x-1,令x=0,则y=-1,
∴A点坐标为(0,-1),
∴S△OPQ=S△OAQ+S△OAP=×1×1+×1×2=
分析:(1)先把点P坐标代入入y=可得k=-2×1=-2,则确定了反比例函数解析式为y=-;再把Q(1,n)代入y=-得确定Q点坐标为(1,-2),然后利用待定系数法确定过P、Q两点的一次函数解析式;
(2)画图;
(3)先求出一次函数与y轴的交点A的坐标,然后利用S△OPQ=S△OAQ+S△OAP进行计算即可.
点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数解析式.也考查了待定系数法求函数解析式以及三角形面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

“相约红色重庆,共享绿色园博”,位于重庆市北部新区的国际园林博览会是一个集自然景观和人文景观为一体的大型城市生态公园.自2011年11月19日开园以来,某商家在园博园内出售纪念品“山娃”玩偶.十周以来,该纪念品深受游人喜爱,其销售量不断增加,销售量y(件)与周数x(1≤x≤10,且x取整数)之间所满足的函数关系如下表所示:
周数x 1 2 3 4 5 6 7 8 9 10
销售量y(件) 110 120 130 140 150 160 170 180 190 200
为回馈顾客,该商家将此纪念品的价格不断下调,其销售单价z(元)与周数x(1≤x≤10,且x取整数)之间成一次函数关系,且第一周的销售单价为68元,第二周的销售单价为66元.另外,已知该纪念品每件的成本为30元.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式;根据题意,直接写出z与x之间满足的一次函数关系式;
(2)求前十周哪一周的销售利润最大,并求出此最大利润;
(3)从十一周开始,其他商家陆续入驻园博园,因此该商店的销售情况不如从前.该纪念品的销售量比十周下降a%(0<a<10),于是该商家将此纪念品的销售单价在十周的基础上提高1.4a%.另外,随着园博园管理措施的逐步完善,该商家需每周交纳200元的各种费用.这样,十一周的销售利润恰好与十周持平.请参考以下数据,估算出a的整数值.
(参考数据:222=484,232=529,242=576,252=625)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•日照)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:
x 3O00 3200 3500 4000
y 100 96 90 80
(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.
(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:
租出的车辆数
-
1
50
x+160
-
1
50
x+160
未租出的车辆数
1
50
x-60
1
50
x-60
租出每辆车的月收益
x-150
x-150
所有未租出的车辆每月的维护费
x-3000
x-3000
(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:

某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.而且物价部门规定这种产品的销售价不得高于28元/千克,通过市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)的变化如下表:
销售价x(元/千克) 21 23 25 27
销售量w(千克) 38 34 30 26
设这种产品每天的销售利润为y(元).
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出w与x所满足的函数关系式,并求出y与x所满足的函数关系式;
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)该农户想要每天获得150元的销售利润,销售价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

2011年5月9日,我市成立了首支食品药品犯罪侦缉支队,专门打击危害食品药品安全的违法犯罪行为,食品安全已越来越受到人们的关注.我市某食品加工企业严把质量关,积极生产“绿色健康”食品,由于受食品原料供应等因素的影响,生产“绿色健康”食品的产量随月份增加呈下降趋势.今年前5个月生产的“绿色健康”食品y(吨)与月份(x)之间的关系如下表:
月份x(月) 1 2 3 4 5
“绿色健康”食品产量y(吨) 48 46 44 42 40
(1)请你从学过的一次函数、二次函数、反比例函数确定哪种函数关系能表示出y与x的变化规律,并求出y与x的函数关系式.
(2)随着“绿色健康”食品生产量的减少,每生产一吨“绿色健康”食品,企业相应获得的利润有所提高,且每生产一吨获得的利润P(百元)与月份x(月)成一次函数关系.已知1月份每生产一吨“绿色健康”食品,企业相应获利80百元,4月份每生产一吨“绿色健康”食品企业相应获利95百元.那么今年哪月份该企业获得的利润最大?最大利润是多少百元?
(3)受国家法律保护的激励,该企业决定今年5月份起,更新食品安全检测设备的同时,扩建食品原料基地以提高生产“绿色健康”食品的产量.更新设备检测费用和扩建原料基地费用共用去4000百元,预计从6月份起,每月生产一吨“绿色健康”食品的产量在上一个月基础上增加a%,与此同时,每生产一吨“绿色健康”食品,企业相应获得的利润在上一个月的基础上增加20%,要使今年6、7月份利润的总和在扣除设备检测费用和扩建基地费用后,仍是今年5月份月利润的2倍,求a的整数值.(参考数据:
11
≈3.317
12
≈3.464
13
≈3.606
14
≈3.742

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(山东莱芜卷)数学 题型:解答题

(本小题满分12分)已知反比例函数和一次函数,其中一次

函数图象经过(a,b)与(a+1,b+k)两点.

(1) 求反比例函数的解析式.

(2) 如图,已知点A是第一象限内上述两个函数图象的交点,求A点坐标.

(3) 利用(2)的结果,请问:在X轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案