【题目】如图,把一张边长为10cm的正方形纸板的四周各剪去一个边长为xcm的小正方形,再折叠成一个无盖的长方体盒子.
(1)当长方体盒子的底面积为81cm2时,求所剪去的小正方形的边长.
(2)设所折叠的长方体盒子的侧面积为S,求S与x的函数关系式,并写出x的取值范围.
(3)长方体盒子的侧面积为S的值能否是60cm2,若能,请求出x的值;若不能,请说明理由.
【答案】(1) 所剪去的小正方形的边长为0.5cm;(2) S与x的函数关系式为S=﹣8x2+40x,x的取值范围为0<x<5;(3) 不能.理由见解析
【解析】
(1)根据底面积是边长(10-2x)cm的正方形,即可求解;
(2)侧面积是四个面积相等的小长方形,列出二次函数即可;
(3)根据(2)所得函数关系式,将S=60代入解方程即可说明.
(1)根据题意,得
(10﹣2x)2=81
解得x1=0.5,x2=9.5(不符合题意,舍去)
答:所剪去的小正方形的边长为0.5cm.
(2)根据题意,得
S=4x(10﹣2x)
=﹣8x2+40x(0<x<5)
答:S与x的函数关系式为S=﹣8x2+40x,x的取值范围为0<x<5.
(3)答:不能.理由如下:
﹣8x2+40x=60,
整理得2x2﹣5x+15=0
∵△=25﹣120=﹣95<0,
∴此方程无解,
答:长方体盒子的侧面积为S的值不能是60cm2.
科目:初中数学 来源: 题型:
【题目】如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.
(1)求证:BC为⊙O的切线;
(2)若AB=4,AD=1,求线段CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和C(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④;⑤b<c.其中含所有正确结论的选项是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.
(1)在旋转过程中,
①当A,D,M三点在同一直线上时,求AM的长.
②当A,D,M三点为同一直角三角形的顶点时,求AM的长.
(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于的长为半径在AD的两侧作弧,交于两点M、N;第二步,连结MN,分别交AB、AC于点E、F;第三步,连结DE、DF..若BD=6,AF=4,CD=3,则BE的长是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点且与AC的另一个交点为F.
(1)求证:DE是⊙O的切线;
(2)AB=12,∠BAC=60°,求线段DE,EF与所围成的阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,已知AC=3,BC=4,点M是AB边上的一个动点,∠DME的两边与折线A—C—B分别交于点D和点E(点E在点D的右边),且∠DME=∠A,若能使以点D,E,M为顶点的三角形与△ABC相似的点D有三个,则AM的长度x的取值范围是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴,y轴分别交于点A,点B,抛物线经过A,B与点.
(1)求抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作x轴的垂线,垂足为D,交线段AB于点E.设点P的横坐标为m.
①求的面积y关于m的函数关系式,当m为何值时,y有最大值,最大值是多少?
②若点E是垂线段PD的三等分点,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣x2+x+4的图象与x轴交于B,C两点(B在C的左侧),与y轴交于点A.
(1)求出点A,B,C的坐标.
(2)在抛物线上有一动点P,抛物线的对称轴上有另一动点Q,若以B,C,P,Q为顶点的四边形是平行四边形,直接写出点P的坐标.
(3)向右平移抛物线,使平移后的抛物线恰好经过△ABC的外心,求出平移后的抛物线的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com