精英家教网 > 初中数学 > 题目详情
16.点A、B分别是函数y=$\frac{4}{x}$(x>0)和y=-$\frac{4}{x}$(x<0)图象上的一点,A、B两点的横坐标分别为a、b,且OA=OB,a+b≠0,则ab的值为(  )
A.2B.-2C.4D.-4

分析 先根据题意设出A、B两点的坐标,进而可得出结论.

解答 解:∵点A、B分别是函数y=$\frac{4}{x}$(x>0)和y=-$\frac{4}{x}$(x<0)图象上的一点,A、B两点的横坐标分别为a、b,
∴A(a,$\frac{4}{a}$),B(b,-$\frac{4}{b}$)且a>0,b<0.
∵OA=OB,a+b≠0,
∴a=-$\frac{4}{b}$,b=-$\frac{4}{a}$,
∴ab=$\frac{4}{b}$•$\frac{4}{a}$=$\frac{16}{ab}$,
∴ab=-4.
故选D.

点评 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是(  )
A.1B.2C.$\sqrt{3}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.
(1)写出所有个位数字是5的“两位递增数”;
(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
频数频率分布表
成绩x(分)频数(人)频率
50≤x<60100.05
60≤x<70300.15
70≤x<8040n
80≤x<90m0.35
90≤x≤100500.25
根据所给信息,解答下列问题:
(1)m=70,n=0.2;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在80≤x<90分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为(  )
A.(4,$\frac{17}{6}$)B.(4,3)C.(5,$\frac{17}{6}$)D.(5,3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6),(-1,4).
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出△ABC关于x轴对称的△A1B1C1
(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.计算$\sqrt{12}$×$\sqrt{3}$的值是6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.关于x的一元二次方程x2-2x+k=0有两个相等的实数根,则k的值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:初中数学 来源:2016-2017学年山东省新泰市六年级(五四学制)下学期第一次月考数学试卷(解析版) 题型:填空题

如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n个几何体中只有两个面涂色的小立方体共有__________个.

查看答案和解析>>

同步练习册答案