【题目】已知(m﹣n)2=34,(m+n)2=4 000,则m2+n2的值为( )
A.2 016
B.2 017
C.2 018
D.4 034
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点C为⊙O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若直线l与AB的延长线相交于点E,⊙O的半径为3,并且∠CAB=30°.求图中所示阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在Rt△ABC中,∠ABC=90°,∠C=60°,现将一个足够大的直角三角形的顶点P放在斜边AC上.
(1)设三角板的两直角边分别交边AB,BC于点M,N.
①当点P是AC的中点时,分别作PE⊥AB于点E,PF⊥BC于点F,得到图1,写出图中的一对全等三角形;
②在①的条件下,写出与△PEM相似的三角形,并直接写出PN与PM的数量关系.
(2)移动点P,使AP=2CP,将三角板绕点P旋转,设旋转过程中三角板的两直角边分别交边AB,BC于点M,N(PM不与边AB垂直,PN不与边BC垂直);或者三角板的两直角边分别交边AB,BC的延长线于点M,N.
①请在备用图中画出图形,判断PM与PN的数量关系,并选择其中一种图形证明你的结论;
②在①的条件下,当△PCN是等腰三角形时,若BC=3cm,则线段BN的长是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面推理过程:
已知:如图,已知∠1 =∠2,∠B =∠C,
求证:AB∥CD.
证明∵∠1 =∠2(已知),
且∠1 =∠CGD( ),
∴∠2 =∠CGD(等量代换).
∴CE∥BF( ).
∴∠ =∠C( ).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代换).
∴AB∥CD( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从分别标有1,2,3,…,50的50张卡片中抽出2的倍数的卡片的可能性________抽出4的倍数的卡片的可能性(填“大于”“小于”或“等于”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学五次100米跑成绩统计如下表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加县运动会,那么应选( )
甲 | 乙 | 丙 | 丁 | |
平均数(秒) | 16 | 15 | 15 | 16 |
方差 | 30 | 30 | 35 | 42 |
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com