【题目】提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE
分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.
学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.
解决问题:请你选择上述一种方法给予证明.
问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.
【答案】证明:如图1,
∵四边形ABCD为正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四边PMCN为矩形,PM=PN,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBM=∠PEN,
在△PBM和△PEN中
∴△PBM≌△PEN(AAS),
∴PB=PE;
如图2,连结PD,
∵四边形ABCD为正方形,
∴CB=CD,CA平分∠BCD,
∴∠BCP=∠DCP,
在△CBP和△CDP中
,
∴△CBP≌△CDP(SAS),
∴PB=PD,∠CBP=∠CDP,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBC=∠PED,
∴∠PED=∠PDE,
∴PD=PE,
∴PB=PD;
如图3,PB=PE还成立.
理由如下:过点P作PM⊥BC,PN⊥CD,垂足分别为M,N,
∵四边形ABCD为正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四边PMCN为矩形,PM=PN,
∴∠MPN=90°,
∵∠BPE=90°,∠BCD=90°,
∴∠BPM+∠MPE=90°,
而∠MEP+∠EPN=90°,
∴∠BPM=∠EPN,
在△PBM和△PEN中
,
∴△PBM≌△PEN(AAS),
∴PB=PE.
【解析】对于图1,根据正方形的性质得∠BCD=90°,AC平分∠BCD,而PM⊥BC,PN⊥CD,则四边PMCN为矩形,根据角平分线性质得PM=PN,根据四边形内角和得到∠PBC+∠CEP=180°,再利用等角的补角相等得到∠PBM=∠PEN,然后根据“AAS”证明△PBM≌△PEN,则PB=PE;
对于图2,连结PD,根据正方形的性质得CB=CD,CA平分∠BCD,根据角平分线的性质得∠BCP=∠DCP,再根据“SAS”证明△CBP≌△CDP,则PB=PD,∠CBP=∠CDP,根据四边形内角和得到∠PBC+∠CEP=180°,再利用等角的补角相等得到∠PBC=∠PED,则∠PED=∠PDE,所以PD=PE,于是得到PB=PD;
对于图3,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N,根据正方形的性质得∠BCD=90°,AC平分∠BCD,而PM⊥BC,PN⊥CD,得到四边PMCN为矩形,PM=PN,则∠MPN=90°,利用等角的余角相等得到∠BPM=∠EPN,然后根据“AAS”证明△PBM≌△PEN,所以PB=PE.
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在 分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在 分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段AB,以下作图不可能的是( )
A. 在AB上取一点C,使AC=BC
B. 在AB的延长线上取一点C,使BC=AB
C. 在BA的延长线上取一点C,使BC=AB
D. 在BA的延长线上取一点C,使BC=2AB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为( )
A.5个B.6个C.7个D.8个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com