精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为(
A.
B.2
C.
D.

【答案】B
【解析】解:∵∠ABC=90°, ∴∠ABP+∠PBC=90°,
∵∠PAB=∠PBC,
∴∠BAP+∠ABP=90°,
∴∠APB=90°,
∴OP=OA=OB(直角三角形斜边中线等于斜边一半),
∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,
在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,
∴OC= =5,
∴PC=OC﹣OP=5﹣3=2.
∴PC最小值为2.
故选B.

首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,OA=4,OC=3,点D为BC边上一点,以AD为一边在与点B的同侧作正方形ADEF,连接OE.当点D在边BC上运动时,OE的长度的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,CE垂直对角线AC于点C,AB的延长线交CE于点E.
(1)求证:CD=BE;
(2)如果∠E=60°,CE=m,请写出求菱形ABCD面积的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①②,试研究其中∠12与∠34之间的数量关系;

(2)如果我们把∠12称为四边形的外角,那么请你用文字描述上述的关系式;

(3)用你发现的结论解决下列问题:

如图,AEDE分别是四边形ABCD的外角∠NADMDA的平分线,B+C=240°,求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC的底边BC=10cm,当BC边上的高线AD从小到大变化时,ABC的面积也随之变化.

(1)在这个变化过程中,自变量和因变量各是什么?

(2)ABC的面积S(cm2)与高线h(cm)之间的关系式是什么?

(3)用表格表示当h4cm变到10cm时(每次增加1cm),S的相应值;

(4)当h每增加1cm时,S如何变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018120日,山西迎来了复兴号列车,与和谐号相比,复兴号列车时速更快,安全性更好.已知太原南﹣北京西全程大约500千米,复兴号”G92次列车平均每小时比某列和谐号列车多行驶40千米,其行驶时间是该列和谐号列车行驶时间的(两列车中途停留时间均除外).经查询,复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐复兴号”G92次列车从太原南到北京西需要多长时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
(1)求证:CB是⊙O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离;
(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离.(供选用数据: ≈1.8, ≈1.9, ≈2.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰ABC中,∠A=36°,ABC=ACB,1=2,3=4,BDCE交于点O,则图中等腰三角形有(  )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

同步练习册答案