精英家教网 > 初中数学 > 题目详情

在等腰梯形ABCD中,AB∥CD,DC =" 3" cm,∠A=60°,BD平分∠ABC,则这个梯形的周长是(      )

A.21 cm;B.18 cm;C.15cm;D.12 cm;

C

解析试题分析:根据题意,可知∠A=∠ABC=60°,即可推出∠ABD=∠DBC=30°,∠ADB=90°,∠BDC=30°,因此,CD=BC=AD=3,根据含30°角的直角三角形的性质可知AB=6,便可推出梯形的周长.
∵等腰梯形ABCD中,AB∥CD,DC=3cm,∠A=60°,
∴BC=AD,∠A=∠ABC=60°,
∵BD平分∠ABC,
∴∠ABD=∠DBC=30°,
∴∠BDC=30°,
∵∠ABD=30°,∠A=60°,
∴∠ADB=90°,
∵CD=3cm,
∴CD=BC=AD=3,
∴AB=2AD=6,
∴梯形ABCD的周长=AB+BC+CD+DA=6+3+3+3=15cm.
故选择C.
考点:本题考查的是等腰梯形的性质,含30°角的直角三角形的性质
点评:解答本题的关键是熟练掌握含30°角的直角三角形的性质:直角三角形中30°角所对的直角边等于斜边的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,则下底BC的长为
7
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图所示,在等腰梯形ABCD中,AD∥BC,AB=CD,点P为BC边上任意一点,且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分别是E、F、G,请你探索PE、PF、BG的长度之间的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E为边BC上一点,且AE=DC.
(1)求证:四边形AECD是平行四边形;
(2)当∠B=2∠DCA时,求证:四边形AECD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点,MB=MC吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,垂足为O,过D作DE∥AC交BC的延长线于E.
(1)求证:四边形ACED是平行四边形;
(2)若AD=4,BC=8,求梯形ABCD的面积.

查看答案和解析>>

同步练习册答案