精英家教网 > 初中数学 > 题目详情

【题目】已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.

【答案】
(1)

解:结论AE=EF=AF.理由:如图1中

,连接AC,

∵四边形ABCD是菱形,∠B=60°,

∴AB=BC=CD=AD,∠B=∠D=60°,

∴△ABC,△ADC是等边三角形,

∴∠BAC=∠DAC=60°

∵BE=EC,

∴∠BAE=∠CAE=30°,AE⊥BC,

∵∠EAF=60°,

∴∠CAF=∠DAF=30°,

∴AF⊥CD,

∴AE=AF(菱形的高相等),

∴△AEF是等边三角形,

∴AE=EF=AF.


(2)

解:证明:如图2中

,∵∠BAC=∠EAF=60°,

∴∠BAE=∠CAE,

在△BAE和△CAF中,

∴△BAE≌△CAF,

∴BE=CF.


(3)

解:

过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,

∵∠EAB=15°,∠ABC=60°,

∴∠AEB=45°,

在RT△AGB中,∵∠ABC=60°AB=4,

∴BG=2,AG=2

在RT△AEG中,∵∠AEG=∠EAG=45°,

∴AG=GE=2

∴EB=EG﹣BG=2 ﹣2,

∵△AEB≌△AFC,

∴AE=AF,EB=CF=2 ﹣2,∠AEB=∠AFC=45°,

∵∠EAF=60°,AE=AF,

∴△AEF是等边三角形,

∴∠AEF=∠AFE=60°

∵∠AEB=45°,∠AEF=60°,

∴∠CEF=∠AEF﹣∠AEB=15°,

在RT△EFH中,∠CEF=15°,

∴∠EFH=75°,

∵∠AFE=60°,

∴∠AFH=∠EFH﹣∠AFE=15°,

∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,

在RT△CHF中,∵∠CFH=30°,CF=2 ﹣2,

∴FH=CFcos30°=(2 ﹣2) =3﹣

∴点F到BC的距离为3﹣


【解析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.
    (2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CFcos30°,因为CF=BE,只要求出BE即可解决问题. 本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.
【考点精析】通过灵活运用菱形的性质,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,ADBC于点D,EAB边上任意一点,EFBC于点F,1=2.求证:DGAB.请把证明的过程填写完整.

证明:∵ADBC,EFBC(   ),

∴∠EFB=ADB=90°(垂直的定义)

EF      

∴∠1=      

又∵∠1=2(已知)

      

DGAB(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A( ),点D的坐标为(0,1)
(1)求直线AD的解析式;
(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:

(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;

(2)圆圆同学说:因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量,你觉得圆圆说的对吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】看图填空:

(1)过点________和点_______作直线;

(2)延长线段_________________,且使________=_________

(3)过点_________作直线_______的垂线;

(4)作射线_______,使_____平分________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,2,3分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.

(1)在图1中,求证:△ABE≌△ADC.
(2)由(1)证得△ABE≌△ADC,由此可推得在图1中∠BOC=120°,请你探索在图2中,∠BOC的度数,并说明理由或写出证明过程.
(3)填空:在上述(1)(2)的基础上可得在图3中∠BOC=(填写度数).
(4)由此推广到一般情形(如图4),分别以△ABC的AB和AC为边向△ABC外作正n边形,BE和CD仍相交于点O,猜想得∠BOC的度数为(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.

(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;
(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)
②是否存在满足条件的点P,使得PC= ?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知△ABC和△BDE都是等边三角形.则下列结论:①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等边三角形;⑤HB平分∠AHD.其中正确的有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学骑自行车去新华书店,如图表示他离家的距离y(千米)与所用的时间s(小时)之间关系的函数图象

(1)根据图象回答:小明家离新华书店千米,小明用了小时到达新华书店;
(2)小明从家出发两个半小时走了千米;
(3)直线CD的函数解析式为
(4)小明出发小时,离家12千米.

查看答案和解析>>

同步练习册答案