【题目】已知抛物线y=﹣x2﹣2x+3.问:
(1)该抛物线的顶点坐标是 ;
(2)该函数与x轴的交点坐标是 , ,并在网格中画出该函数的图象;
(3)x取什么值时,抛物线在x轴上方? .
(4)已知y=t,t取什么值时与抛物线y=﹣x2﹣2x+3有两个交点?
【答案】(1)顶点坐标为(﹣1,4);(2)抛物线与x轴的交点坐标为(﹣3,0),(1,0);(3)当﹣3<x<1时,y>0,抛物线在x轴上方;(4)当t<4时,直线y=t与抛物线y=﹣x2﹣2x+3有两个交点.
【解析】
(1)通过配方化为顶点式即可求解;
(2)令y=0,解方程﹣x2﹣2x+3=0即可,用描点发可画出函数图像;
(3)结合图象写出抛物线在x轴上方对应的自变量的范围即可;
(4)结合图象,当t>4时,y=t与抛物线无交点;当t=4时,y=t与抛物线有一个交点;当t<4时,y=t与抛物线有两个交点.
(1)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴顶点坐标为(﹣1,4);
(2)当y=0时,﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,
∴抛物线与x轴的交点坐标为(﹣3,0),(1,0);
如图,
(3)当﹣3<x<1时,y>0,即抛物线在x轴上方;
(4)当t<4时,直线y=t与抛物线y=﹣x2﹣2x+3有两个交点.
科目:初中数学 来源: 题型:
【题目】某玩具批发商销售每件进价为40元的玩具,市场调查发现,若以每件50元的价格销售,平均每天销售90件,单价每提高1元,平均每天就少销售3件.
(1)平均每天的销售量y(件)与销售价x(元/件)之间的函数关系式为 ;
(2)求该批发商平均每天的销售利润W(元)与销售价x(元/件)之间的函数关系式;
(3)物价部门规定每件售价不得高于55元,当每件玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.
(1)求证:AB为⊙C的切线.
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,
(1)求抛物线的函数表达式;
(2)△BCD的面积等于△AOC的面积的时,求的值;
(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0)、点B,与y轴交于点C,抛物线的对称轴是直线x=1,连接BC、AC.
(1)求S△ABC(用含有a的代数式来表示);
(2)若S△ABC=6,求抛物线的解析式;
(3)在(2)的条件下,当﹣1≤x≤m+1时,y的最大值是2,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,设D为锐角△ABC内一点,∠ADB=∠ACB+90°,过点B作BE⊥BD,BE=BD,连接EC.
(1)求∠CAD+∠CBD的度数;
(2)若,
①求证:△ACD∽△BCE;
②求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点P在函数y=(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积( )
A.逐渐变大B.逐渐变小C.等于定值16D.等于定值24
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com