精英家教网 > 初中数学 > 题目详情

【题目】菱形ABCD的对角线AC,BD相交于点O,AC=4 ,BD=4,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PFBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1 , 未被盖住部分的面积为S2 , BP=x.
(1)用含x的代数式分别表示S1 , S2
(2)若S1=S2 , 求x的值.

【答案】
(1)解:①当点P在BO上,0<x≤2时,如图1所示.

∵四边形ABCD是菱形,AC=4 ,BD=4,

∴AC⊥BD,BO= BD=2,AO= AC=2

且S菱形ABCD= BDAC=8

∴tan∠ABO= =

∴∠ABO=60°.

在Rt△BFP中,

∵∠BFP=90°,∠FBP=60°,BP=x,

∴sin∠FBP= =sin60°=

∴FP= x.

∴BF=

∵四边形PFBG关于BD对称,

四边形QEDH与四边形PEBG关于AC对称,

∴SBFP=SBGP=SDEQ=SDHQ

∴S1=4SBFP

=4× × x

=

∴S2=8

②当点P在OD上,2<x≤4时,如图2所示.

∵AB=4,BF=

∴AF=AB﹣BF=4﹣

在Rt△AFM中,

∵∠AFM=90°,∠FAM=30°,AF=4﹣

∴tan∠FAM= =tan30°=

∴FM= (4﹣ ).

∴SAFM= AFFM

= (4﹣ (4﹣

= (4﹣ 2

∵四边形PFBG关于BD对称,

四边形QEDH与四边形FPBG关于AC对称,

∴SAFM=SAEM=SCHN=SCGN

∴S2=4SAFM

=4× (4﹣ 2

= (x﹣8)2

∴S1=8 ﹣S2=8 (x﹣8)2

综上所述:

当0<x≤2时,S1= ,S2=8

当2<x≤4时,S1=8 (x﹣8)2,S2= (x﹣8)2


(2)解:①当点P在BO上时,0<x≤2.

∵S1=S2,S1+S2=8

∴S1=4

∴S1= =4

解得:x1=2 ,x2=﹣2

∵2 >2,﹣2 <0,

∴当点P在BO上时,S1=S2的情况不存在.

②当点P在OD上时,2<x≤4.

∵S1=S2,S1+S2=8

∴S2=4

∴S2= (x﹣8)2=4

解得:x1=8+2 ,x2=8﹣2

∵8+2 >4,2<8﹣2 <4,

∴x=8﹣2

综上所述:若S1=S2,则x的值为8﹣2


【解析】(1)根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD上求S1和S2的方法不同,因此需分情况讨论.(2)由S1=S2和S1+S2=8 可以求出S1=S2=4 .然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值.
【考点精析】根据题目的已知条件,利用菱形的性质和轴对称的性质的相关知识可以得到问题的答案,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;关于某条直线对称的两个图形是全等形;如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为(
A.﹣
B.
C.2或
D.2或

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知2014年3月份在某医院出生的20名新生婴儿的体重如下(单位:kg)
4.7 2.9 3.2 3.5 3.8 3.4 2.8 3.3 4.0 4.5
3.6 4.8 4.3 3.6 3.4 3.5 3.6 3.5 3.7 3.7

(1)求这组数据的极差;
(2)若以0.4kg为组距,对这组数据进行分组,制作了如下的“某医院2014年3月份20名新生婴儿体重的频数分布表”(部分空格未填),请在频数分布表的空格中填写相关的量
某医院2014年3月份20名新生儿体重的频数分布表

组别(kg)

划记

频数

3.55﹣3.95

正一

6

合计

20


(3)经检测,这20名婴儿的血型的扇形统计图如图所示(不完整),求:
①这20名婴儿中是A型血的人数;
②表示O型血的扇形的圆心角度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH= AC,则∠ABC所对的弧长等于(长度单位).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图中的数阵是由全体正奇数排成的.

(1)图中平行四边形框内的九个数之和与中间的数有什么关系?

(2)在图中任意作一个类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由.这九个数之和能等于2 016吗?2 015,2 025呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线lAC:y=﹣x轴、y轴分别为A、C两点,直线BCACx轴于点B.

(1)求点B的坐标及直线BC的解析式;

(2)将△OBC关于BC边翻折,得到△O′BC,过点O′作直线O′E垂直x轴于点E,Fy轴上一点,P是直线O′E上任意一点,P、Q两点关于x轴对称,当|PA﹣PC|最大时,请求出QF+FC的最小值;

(3)M是直线O′E上一点,且QM=3,在(2)的条件下,在平面直角坐标系中,是否存在点N,使得以Q、F、M、N四点为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(﹣1)2015+(﹣ 1+ ﹣2sin45°.
(2)解不等式 ,并写出不等式的正整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】龟兔首次赛跑之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了龟兔再次赛跑的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:

龟兔再次赛跑的路程为1000

兔子和乌龟同时从起点出发;

乌龟在途中休息了10分钟;

兔子在途中750处追上乌龟.

其中正确的说法是   .(把你认为正确说法的序号都填上)

查看答案和解析>>

同步练习册答案