精英家教网 > 初中数学 > 题目详情
如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.
(1)当t=    时,△PQR的边QR经过点B;
(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;
(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.
(1)1秒
(2)
(3)t的值为(8﹣2

试题分析:(1)△PQR的边QR经过点B时,△ABQ构成等腰直角三角形,则有AB=AQ,由此列方程求出t的值;
(2)在图形运动的过程中,有三种情形,需要分类讨论,避免漏解;
(3)由已知可得ABFE为正方形;其次通过旋转,由三角形全等证明MN=EM+BN;设EM=m,BN=n,在Rt△FMN中,由勾股定理得到等式:mn+3(m+n)﹣9=0,由此等式列方程求出时间t的值.
试题解析:(1)△PQR的边QR经过点B时,△ABQ构成等腰直角三角形,
∴AB=AQ,即3=4﹣t,
∴t=1.
即当t=1秒时,△PQR的边QR经过点B.
(2)①当0≤t≤1时,如答图1﹣1所示.

设PR交BC于点G,
过点P作PH⊥BC于点H,则CH=OP=2t,GH=PH=3.
S=S矩形OABC﹣S梯形OPGC
=8×3﹣(2t+2t+3)×3
=﹣6t+
②当1<t≤2时,如答图1﹣2所示.

设PR交BC于点G,RQ交BC、AB于点S、T.
过点P作PH⊥BC于点H,则CH=OP=2t,GH=PH=3.
QD=t,则AQ=AT=4﹣t,
∴BT=BS=AB﹣AQ=3﹣(4﹣t)=t﹣1.
S=S矩形OABC﹣S梯形OPGC﹣S△BST
=8×3﹣(2t+2t+3)×3﹣(t﹣1)2
=﹣t2﹣5t+19;
③当2<t≤4时,如答图1﹣3所示.

设RQ与AB交于点T,则AT=AQ=4﹣t.
PQ=12﹣3t,∴PR=RQ=(12﹣3t).
S=S△PQR﹣S△AQT
=PR2AQ2
=(12﹣3t)2(4﹣t)2
=t2﹣14t+28.
综上所述,S关于t的函数关系式为:

(3)∵E(5,0),∴AE=AB=3,
∴四边形ABFE是正方形.
如答图2,将△AME绕点A顺时针旋转90°,得到△ABM′,其中AE与AB重合.
∵∠MAN=45°,∴∠EAM+∠NAB=45°,
∴∠BAM′+∠NAB=45°,
∴∠MAN=∠M′AN.
连接MN.在△MAN与△M′AN中,

∴△MAN≌△M′AN(SAS).
∴MN=M′N=M′B+BN
∴MN=EM+BN.

设EM=m,BN=n,则FM=3﹣m,FN=3﹣n.
在Rt△FMN中,由勾股定理得:FM2+FN2=MN2,即(3﹣m)2+(3﹣n)2=(m+n)2
整理得:mn+3(m+n)﹣9=0.  ①
延长MR交x轴于点S,则m=EM=RS=PQ=(12﹣3t),
∵QS=PQ=(12﹣3t),AQ=4﹣t,
∴n=BN=AS=QS﹣AQ=(12﹣3t)﹣(4﹣t)=﹣t+2.
∴m=3n,
代入①式,化简得:n2+4n﹣3=0,
解得n=﹣2+或n=﹣2﹣(舍去)
∴2﹣t=﹣2+
解得:t=8﹣2
∴若∠MAN=45°,则t的值为(8﹣2)秒.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).
(1)求二次函数的解析式.
(2)求函数图象的顶点坐标及D点的坐标.
(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.
(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在SADP=SBCD?若存在,请求出P点的坐标;若不存在.请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.
(1)求该抛物线的解析式及点M的坐标;
(2)连接ON,AC,证明:∠NOB=∠ACB;
(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;
(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t, 0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.
(1)填空:△AOB≌△       ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,       
(2)求点C的坐标,并用含a,t的代数式表示b;
(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;
(4)当抛物线开口向上,对称轴是直线,顶点随着t的增大向上移动时,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线与x轴交点为A、B(点B在点A的右侧),与y轴交于点C.
(1)试用含m的代数式表示A、B两点的坐标;
(2)当点B在原点的右侧,点C在原点的下方时,若是等腰三角形,求抛物线的解析式;
(3)已知一次函数,点P(n,0)是x轴上一个动点,在(2)的条件下,过点P作垂直于x轴的直线交这个一次函数的图象于点M,交抛物线于点N,若只有当时,点M位于点N的下方,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=x2+2x-2013的对称轴是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

若函数y=(m-4)x3m2-2m-3是二次函数,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.
(1)当t为何值时,∠AMN=∠ANM?
(2)当t为何值时,△AMN的面积最大?并求出这个最大值.

查看答案和解析>>

同步练习册答案