精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数y=
k
x
(k为常数,且k>0)在第一象限的图象交于点E,m.过点E作EM⊥y轴于M,过点m作m0⊥x轴于0,直线EM与m0交于点C.若
BE
Bm
=
1
m
(m为大于l的常数).记△CEm的面积为S1,△OEm的面积为S2,则
S1
S2
=______.&0bsp;(用含m的代数式表示)
过点F作FD⊥cO于点D,EW⊥AO于点W,
cE
cF
=
9
9

9E
DF
=
9
9

∵9E•EW=FN•DF,
9E
DF
=
FN
EW

FN
EW
=
9
9

设E点坐标为:(6,9r),则F点坐标为:(96,r),
∴△CEF的面积为:S9=
9
2
(96-6)(9r-r)=
9
2
(9-9)26r,
∵△OEF的面积为:S2=S矩形CNO9-S9-S△9EO-S△FON
=9C•CN-
9
2
(9-9)26r-
9
2
9E•9O-
9
2
FN•NO,
=96•9r-
9
2
(9-9)26r-
9
2
6•9r-
9
2
r•96,
=926r-
9
2
(9-9)26r-96r,
=
9
2
(92-9)6r,
=
9
2
(9+9)(9-9)6r,
S9
S2
=
9
2
(9-9)&ncsp;26r
9
2
(9-9)(9+9)6r
=
9-9
9+9

故答案为:
9-9
9+9

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知A(-1,n),B(
1
2
,-2)是一次函数y=kx+b的图象和反比例函数y=
m
x
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴交点C的坐标及△AOB的面积;
(3)求方程kx+b-
m
x
=0的解(请直接写出答案);
(4)在y轴上是否存在一点P,使三角形PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是汽车在某高速公路上匀速行驶时,速度v(千米/时)与行驶时间t(小时)的函数图象,请根据图象提供的信息回答问题:汽车最慢用______小时可以到达.如果要在4小时内到达,汽车的速度应不低于______千米/时.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=
k1
x
的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y=
k2
x
(x>0)的图象交于点D(n,-2).
(1)求k1和k2的值;
(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△ACE?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的每月应付钱数y与时间t的关系如图所示:
(1)根据图象写出y与t的函数关系式.
(2)求出首付的钱数.
(3)如果要求每月支付的钱数不少于400元,那么还至少几个月才能将所有的钱全部还清?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,A为y轴正半轴上一点,过A作x轴的平行线,交函数y=-
2
x
(x<0)的图象于B,交函数y=
6
x
(x>0)的图象于C,过C作y轴的平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(2)的条件下,求四边形AODC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-
1
3
x+2
的图象分别与x轴、y轴相交于A、B两点,点P为线段AB上一点,PC⊥x轴于点C,延长PC交反比例函数y=
k
y
(x>0)
的图象于点Q,且tan∠OAQ=
1
3
.连接OP、OQ,四边形OQAP的面积为6.
(1)求k的值;
(2)判断四边形OQAP的形状,并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在直角坐标系中,已知菱形ABCD的面积为3,顶点A在双曲线y=
k
x
上,CD与y轴重合,则k的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数y=
k
x
(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案