精英家教网 > 初中数学 > 题目详情

【题目】为加快“秀美荆河水系生态治理工程”进度,污水处理厂决定购买10台污水处理设备.现有AB两种型号的设备,每台的价格分别为a万元,b万元,每月处理污水量分别为240吨,200吨.已知购买一台A型设备比购买一台B型设备多2万元,购买2A型设备比购买3B型设备少6万元.

1)求ab的值;

2)厂里预算购买污水处理设备的资金不超过105万元,你认为有哪几种购买方案;

3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为污水处理厂设计一种最省钱的购买方案.

【答案】(1)a的值为12b的值为10;(2)有3种购买方案,方案1:购买B型设备10台;方案2:购买A型设备1台,B型设备9台;方案3:购买A型设备2台,B型设备8台;(3)为了节约资金,该公司最省钱的一种购买方案为:购买A型设备1台,B型设备9台.

【解析】

1)由已知购买一台A型设备比购买一台B型设备多2万元,购买2A型设备比购买3B型设备少6万元,即可得出关于ab的二元一次方程组,解之即可得出结论;

2)设购买A型设备m台,则购买B型设备(10m)台,根据总价=单价×数量结合厂里预算购买污水处理设备的资金不超过105万元,即可得出关于m的一元一次不等式,解之取其中的整数即可得出各购买方案;

3)由每月要求处理污水量不低于2040吨,来验证m的值,再利用总价=单价×数量找出最省钱的购买方案.

解:(1)根据题意得:

解得:

答:a的值为12b的值为10

2)设购买A型设备m台,则购买B型设备(10m)台,

根据题意得:12m+1010m≤105

解得:m

m可取的值为012

故有3种购买方案,方案1:购买B型设备10台;方案2:购买A型设备1台,B型设备9台;方案3:购买A型设备2台,B型设备8台.

3)当m0时,每月的污水处理量为:200×102000(吨),

20002040

m0不合题意,舍去;

m1时,每月的污水处理量为:240+200×92040(吨),

20402040

m1符合题意,此时购买设备所需资金为:12+10×9102(万元);

m2时,每月的污水处理量为:240×2+200×82080(吨),

20802040

m2符合题意,此时购买设备所需资金为:12×2+10×8104(万元).

102104

∴为了节约资金,该公司最省钱的一种购买方案为:购买A型设备1台,B型设备9台.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线经过点A30)和点B20).直线为常数,且)与BC交于点D,与轴交于点E,与AC交于点F

1)求抛物线的解析式;

2)连接AE,求为何值时,AEF的面积最大;

3)已知一定点M20).问:是否存在这样的直线,使BDM是等腰三角形?若存在,请求出的值和点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象与反比例函数y的图象相交于AB两点.利用图中条件

1)求反比例函数与一次函数的关系式;

2)根据图象写出使该一次函数的值大于该反比例函数的值的x的取值范围;

3)求出△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.

甲种客车

乙种客车

载客量(座/辆)

60

45

租金(元/辆)

550

450

1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;

2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人共同计算一道整式乘法:(2xa)(3xb),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2-9x+10.请你计算出ab的值各是多少,并写出这道整式乘法的正确结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,点边所在直线上(与点不重合),点边所在直线上,且边于点

1)如图1,若是等边三角形,点边上,过点,试说明:

某同学发现可以由以下两种思路解决此问题:

思路一:过点,交于点,如图1

因为是等边三角形,得是等边三角形

又由,得  

再说明  

得出

从而得到结论.

思路二:过点,交的延长线于点,如图

①请你在“思路一”中的括号内填写理由;

②根据“思路二”的提示,完整写出说明过程;

2)如图3,若是等腰直角三角形,,点在线段的延长线上,过点,试探究之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1A村和B村在一条大河CD的同侧,它们到河岸的距离ACBD分别为1千米和4千米,又知道CD的长为4千米.

1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选

方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB).(如图2

方案2:作A点关于直线CD的对称点A',连接A'BCDM点,水厂建在M点处,分别向两村修管道AMBM.(即AM+BM)(如图3

从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.

2)有一艘快艇Q从这条河中驶过,当快艇QCD中间,DQ为多少时?ABQ为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,动点P从点C出发,沿CA方向运动,速度是2cm/s,动点Q从点B出发,沿BC方向运动,速度是1cm/s.

(1)几秒后P,Q两点相距25cm?

(2)几秒后△PCQ△ABC相似

(3)设△CPQ的面积为S1,△ABC的面积为S2,在运动过程中是否存在某一时刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,则说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,EAD的中点,延长CEBA交于点F,连接ACDF

(1)求证:四边形ACDF是平行四边形;

(2)当CF平分∠BCD时,写出BCCD的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案