精英家教网 > 初中数学 > 题目详情
精英家教网如图,在⊙O中,直径CD的长度为10cm,AB是弦,且AB⊥CD于M,OM=3cm,求弦AB的长.
分析:连接OA,在Rt△OAM中,根据勾股定理,易求得AM的长.由垂径定理知AB=2AM,由此可求出弦AB的长.
解答:精英家教网解:如图,连接OA
∵CD=10cm,
∴OA=5cm,(1分)
∵AB⊥CD,
∴∠AMO=90°;
在Rt△AOM中,∵OM=3cm,
∴AM=
OA2-OM2
=4cm;(3分)
又∵CD是直径,
AB是弦,
AB⊥CD于M,
∴AB=2AM
∴AB=8cm.(5分)
点评:此题主要考查的是垂径定理及勾股定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,则BC=
 
cm,∠ABD=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,直径AB与弦CD垂直,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线F精英家教网C与直线AB相交于点G.
(1)证明:直线FC与⊙O相切;
(2)若OB=BG,求证:四边形OCBD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•百色)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳区二模)如图,在⊙O中,直径AB⊥弦CD于点H,E是⊙O上的点,若∠BEC=25°,则∠BAD的度数为(  )

查看答案和解析>>

同步练习册答案