【题目】按指定的方法解方程:
(1)9(x﹣1)2﹣5=0(直接开平方法)
(2)2x2﹣4x﹣8=0(配方法)
(3)6x2﹣5x﹣2=0(公式法)
(4)(x+1)2=2x+2(因式分解法)
【答案】(1)x1=,x2=;(2)x1=1+,x2=1﹣;(3)x1=,x2=;(4)x1=﹣1,x2=1.
【解析】
(1)移项后,利用直接开平方法解方程;
(2)利用配方法,先把二次项的系数化为1,再确定一次项的系数,然后配方即可;
(3)先确定a、b、c的值,然后求出△=b2-4ac,判断后利用公式法解方程即可;
(4)把方程右边提公因式2,再移项,提公因式x+1即可解方程.
(1)移项得:9(x﹣1)2=5,
(x﹣1)2=,
开方得:x﹣1=±,
x1=,x2=;
(2)2x2﹣4x﹣8=0,
2x2﹣4x=8,
x2﹣2x=4,
配方得:x2﹣2x+1=4+1,
(x﹣1)2=5,
开方得:x﹣1=±,
x1=1+,x2=1﹣;
(3)6x2﹣5x﹣2=0,
b2﹣4ac=(﹣5)2﹣4×6×(﹣2)=73,
x=,
x1=,x2=;
(4)(x+1)2=2x+2,
(x+1)2﹣2(x+1)=0,
(x+1)(x+1﹣2)=0,
x+1=0,x+1﹣2=0,
x1=﹣1,x2=1.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.4.其中正确的结论是______________.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,则下列说法正确的是( )
A. △ODE绕点O顺时针旋转60°得到△OBC B. △ODE绕点O逆时针旋转120°得到△OAB
C. △ODE绕点F顺时针旋转60°得到△OAB D. △ODE绕点C逆时针旋转90°得△OAB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;
(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由;
(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP、∠DOP、∠APO之间满足的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:把形如的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即.例如:是的一种形式的配方,是的另一种形式的配方
请根据阅读材料解决下列问题:
()比照上面的例子,写出的两种不同形式的配方;
()已知,求的值;
()已知,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形 ABCD 的一条边 AD=8,将矩形 ABCD 折叠,使得顶点 B 落在 CD 边上的 P 点处.
(1)求证:△OCP∽△PDA;
(2)若△OCP 与△PDA 的面积比为 1:4,求边 AB 的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知A(a,0),B(0,b)且a,b满足,
点P在线段AB上(含端点)的一点,连接OP。
(1)若AB=,且△OBP是以OB为腰长的等腰三角形,求BP的长;
(2)如图1,过点A作AQ⊥x轴(Q在x轴上方),且满足∠OPQ=90°,求证:OP=PQ;
(3)如图2,C,D分别为OA,OB上的两点,且OC=OD,点P满足OP⊥AD,过点P作
PE⊥BC交AD的延长线于点E,试探究AE,OP,PE之间的数量关系,并给出证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校位于小亮家北偏东35方向,距离为300m,学校位于大刚家南偏东85°方向,距离也为300m,则大刚家相对于小亮家的位置是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com