分析 (1)先利用矩形的性质得∠D=∠1=∠2+∠3=90°,然后根据等角的余角相等得到∠2=∠4,则可判断△CDE∽△CBF;
(2)先∴BF=AB,设CD=BF=x,再利用△CDE∽△CBF,则可根据相似比得到$\frac{x}{3}=\frac{1}{x}$,然后利用比例性质求出x即可.
解答 (1)证明:∵四边形ABCD是矩形,
∴∠D=∠1=∠2+∠3=90°,
∵CF⊥CE
∴∠4+∠3=90°
∴∠2=∠4,
∴△CDE∽△CBF;
(2)解:∵四边形ABCD是矩形,
∴CD=AB,
∵B为AF的中点
∴BF=AB,
设CD=BF=x
∵△CDE∽△CBF,
∴$\frac{CD}{CB}=\frac{DE}{BF}$,
∴$\frac{x}{3}=\frac{1}{x}$,
∵x>0,
∴x=$\sqrt{3}$,
即CD的长为$\sqrt{3}$.
点评 本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;两个三角形相似对应角相等,对应边的比相等.也考查了矩形的性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com