精英家教网 > 初中数学 > 题目详情
△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.
(1)将△ABC向右移平2个单位长度,作出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)若将△ABC绕点(-1,0)顺时针旋转180°后得到△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某点成中心对称?若是,请写出对称中心的坐标;若不是,说明理由.

【答案】分析:(1)根据平移的规律找到出平移后的对应点的坐标,依次为A1(0,4),B1(-2,2),C1(-1,1);顺次连接即可得到答案;
(2)根据旋转中心对称的规律可得:旋转后对应点的坐标,依次为A2(0,-4),B2(2,-2),C2(1,-1);顺次连接即可;
(3)观察可得,△A1B1C1与△A2B2C2关于点(0,0)成中心对称.
解答:解:(1)A1(0,4),B1(-2,2),C1(-1,1);(3分)(图形正确给(2分),坐标正确给1分)

(2)A2(0,-4),B2(2,-2),C2(1,-1);(3分)
(图形正确给(2分),坐标正确给1分)

(3)△A1B1C1与△A2B2C2关于点(0,0)成中心对称.(2分)(指出是中心对称给(1分),写出点的坐标给1分)
点评:本题通过图象的平移,感受平移在生活中的应用,体会数学与生活的紧密联系,考查学生的动手能力.注意平移关键是先确定几个关健点,接着把这几个点分别移动,再连成图形便可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在平面直角坐标系xOy中,将抛物线y=2x2沿y轴向上平移1个单位,再沿x轴向右平移两个单位,平移后抛物线的顶点坐标记作A,直线x=3与平移后的抛物线相交于B,与直线OA相交于C.
(1)求△ABC面积;
(2)点P在平移后抛物线的对称轴上,如果△ABP与△ABC相似,求所有满足条件的P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,△ABC的顶点坐标是A(-2,3),B(-4,-1),C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1,使点A1(2,-3).
(1)请直接写出点B1,C1的坐标;
(2)将△ABC绕坐标点C顺时针旋转90°得到△A2B2C,画出△A2B2C;
(3)直接写出(1)中平移时,线段AB扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•武汉模拟)在平面直角坐标系中,△ABC的顶点坐标是A(-2,3),B(-4,-1),C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1,使点P(m,n)移到P(m+6,n+1)处.
(1)请直接写出点A1,B1,C1的坐标;
(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
(3)直接写出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),
(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作______.

查看答案和解析>>

同步练习册答案