精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,弦AC与AB成30°的角,CD与⊙O相切于C,交AB的延长线于D.求证:AC=CD.
证明:如右图所示,连接BC,
∵CD是切线,
∴∠DCB=∠A=30°,
又∵AB是直径,
∴∠ACB=90°,
∴∠ABC=90°-30°=60°,
∴∠CDB=∠ABC-∠DCB=60°-30°=30°.
∴∠A=∠CDB,
∴AC=CD.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,以坐标原点O为圆心,6为半径的圆交y轴于A、B两点.AM、BN为⊙O的切线.D是切线AM上一点(D与A不重合),DE切⊙O于点E,与BN交于点C,且AD<BC.设AD=m,BC=n.
(1)求m•n的值;
(2)若m、n是方程2t2-30t+k=0的两根.求:
①△COD的面积;
②CD所在直线的解析式;
③切点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.
(1)当AC=2时,求⊙O的半径;
(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O和不在⊙O上的一点P,过P的直线交⊙O于A,B两点,若PA•PB=24,OP=5,则⊙O的半径长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA是⊙O的切线,切点为A,割线PCB交⊙O于C、B两点,半径OD⊥BC,垂足为E,AD交PB于点F.
(1)PA与PF是否相等?______(填“是”或“否”);
(2)若F是PB的中点,CF=1.5,则切线PA的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,OEAB交BC于E,连DE.
(1)求证:DE为⊙O切线;
(2)若⊙O的半径为3,DE=4,求AD之长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,平面直角坐标系中,⊙O的圆心在坐标原点,半径为2,点A的坐标为(2,2
3
)
,直线AB为⊙O的切线,B为切点.则B点的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=4
3
,以AC为直径的⊙O交AB于点D,点E是BC的中点,连接OD,OB,DE.
(1)求证:OD⊥DE;
(2)求sin∠ABO的值.

查看答案和解析>>

同步练习册答案