分析 (1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;
(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;
(3)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.
解答 解:(1)∵将点A和点C的坐标代入抛物线的解析式得:$\left\{\begin{array}{l}{c=-3}\\{9+3b+c=0}\end{array}\right.$,解得:b=-2,c=-3.
∴抛物线的解析式为y=x2-2x-3.
∵令x2-2x-3=0,解得:x1=-1,x2=3.
∴点B的坐标为(-1,0).
故答案为:-2;-3;(-1,0).
(2)存在.
理由:如图所示:
①当∠ACP1=90°.
由(1)可知点A的坐标为(3,0).
设AC的解析式为y=kx-3.
∵将点A的坐标代入得3k-3=0,解得k=1,
∴直线AC的解析式为y=x-3.
∴直线CP1的解析式为y=-x-3.
∵将y=-x-3与y=x2-2x-3联立解得x1=1,x2=0(舍去),
∴点P1的坐标为(1,-4).
②当∠P2AC=90°时.
设AP2的解析式为y=-x+b.
∵将x=3,y=0代入得:-3+b=0,解得b=3.
∴直线AP2的解析式为y=-x+3.
∵将y=-x+3与y=x2-2x-3联立解得x1=-2,x2=3(舍去),
∴点P2的坐标为(-2,5).
综上所述,P的坐标是(1,-4)或(-2,5).
(3)如图2所示:连接OD.
由题意可知,四边形OFDE是矩形,则OD=EF.
根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.
由(1)可知,在Rt△AOC中,
∵OC=OA=3,OD⊥AC,
∴D是AC的中点.
又∵DF∥OC,
∴$DF=\frac{1}{2}OC=\frac{3}{2}$.
∴点P的纵坐标是$-\frac{3}{2}$.
∴${x^2}-2x-3=-\frac{3}{2}$,解得:$x=\frac{{2±\sqrt{10}}}{2}$.
∴当EF最短时,点P的坐标是:($\frac{{2+\sqrt{10}}}{2}$,$-\frac{3}{2}$)或($\frac{{2-\sqrt{10}}}{2}$,$-\frac{3}{2}$).
点评 本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、矩形的性质、垂线的性质,求得P1C和P2A的解析式是解答问题(2)的关键,求得点P的纵坐标是解答问题(3)的关键.
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=2\\ y=1.5\end{array}\right.$ | C. | $\left\{\begin{array}{l}x=6\\ y=-1\end{array}\right.$ | D. | $\left\{\begin{array}{l}x=9\\ y=-2\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $x>-\frac{2}{3}$ | B. | $x<-\frac{2}{3}$ | C. | $x>-\frac{3}{2}$ | D. | $x<-\frac{3}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com