精英家教网 > 初中数学 > 题目详情

【题目】有一个运算装置,当输入值为x时,其输出值为y,且y是x的二次函数,已知输入值为﹣2,0,1时,相应的输出值分别为5,﹣3,﹣4.
(1)求此二次函数的解析式;
(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y为正数时输入值x的取值范围.

【答案】
(1)解:设所求二次函数的解析式为y=ax2+bx+c,

把(﹣2,5)(0,﹣3)(1,﹣4)代入得

解得

故所求的解析式为:y=x2﹣2x﹣3;


(2)解:函数图象如图所示,

由图象可得,当输出值y为正数时,

输入值x的取值范围是x<﹣1或x>3.


【解析】(1)把三个点的坐标代入二次函数根据待定系数法求出函数的解析式即可;(2)函数值为正数,即是二次函数与与x轴的交点的上方的函数图象所对应的x的值.
【考点精析】通过灵活运用二次函数的图象,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程

(1)x﹣4=2﹣5x; (2)﹣(x﹣3)=3(2﹣5x);

(3)4x﹣2(﹣x)=1; (4)﹣1=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知直线y=3x分别与双曲线y=y=x>0)交于PQ两点,且OP=2OQ

(1)求k的值.

(2)如图2,若点A是双曲线y= 上的动点,ABx轴,ACy轴,分别交双曲线y=x>0)于点BC,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;

(3)如图3,若点D是直线y=3x上的一点,请你进一步探索在点A运动过程中,以点ABCD为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两地盛产柑桔,地有柑桔200吨,地有柑桔300吨.现将这些柑桔运到CD两个冷藏仓库,已知仓库可储存240吨,仓库可储存260吨;从地运往CD两处的费用分别为每吨20元和25元,从地运往CD两处的费用分别为每吨15元和18元.设从地运往仓库的柑桔重量为x吨,AB两地运往两仓库的柑桔运输费用分别为yA元和yB元.

(1)请填写下表后分别求出yA,yB之间的函数关系式,并写出定义域;

C

D

总计

A

x

200

B

300

总计

240

260

500

(2)试讨论A,B两地中,哪个运费较少;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.

(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.
(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(1,6)和点B在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.
(1)求反比例函数的表达式和点B的坐标;
(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下面三行数:

取每一行的第n个数,依次记为x、y、z.如上图中,当n=2时,x=﹣4,y=﹣3,z=2.

(1)当n=7时,请直接写出x、y、z的值,并求这三个数中最大的数与最小的数的差;

(2)已知n为偶数,且x、y、z这三个数中最大的数与最小的数的差为384,求n的值;

(3)若m=x+y+z,则x、y、z这三个数中最大的数与最小的数的差为   (用含m的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一块菱形菜地ABCD中,对角线AC与BD相交于点O,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于点E,PF⊥AC于点F,下列结论:

①△DBC是等腰三角形;②∠C=30°;③PE+PF=AB;④PE2+AF2=BP2

其中结论正确的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

同步练习册答案