精英家教网 > 初中数学 > 题目详情
(2013•攀枝花)如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1.0),C(0,-3).
(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
分析:(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;
(2)过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为(x,x2+2x-3),根据AC的解析式表示出点N的坐标,再根据S△PAC=S△PAN+S△PCN就可以表示出△PAC的面积,运用顶点式就可以求出结论;
(3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可.
解答:解:(1)由于抛物线y=ax2+bx+c经过A(-3,0),B(1,0),可设抛物线的解析式为:y=a(x+3)(x-1),
将C点坐标(0,-3)代入,得:
a(0+3)(0-1)=-3,解得 a=1,
则y=(x+3)(x-1)=x2+2x-3,
所以抛物线的解析式为:y=x2+2x-3;

(2)过点P作x轴的垂线,交AC于点N.
设直线AC的解析式为y=kx+m,由题意,得
-3k+m=0
m=-3
,解得
k=-1
m=-3

∴直线AC的解析式为:y=-x-3.
设P点坐标为(x,x2+2x-3),则点N的坐标为(x,-x-3),
∴PN=PE-NE=-(x2+2x-3)+(-x-3)=-x2-3x.
∵S△PAC=S△PAN+S△PCN
∴S=
1
2
PN•OA
=
1
2
×3(-x2-3x)
=-
3
2
(x+
3
2
2+
27
8

∴当x=-
3
2
时,S有最大值
27
8
,此时点P的坐标为(-
3
2
,-
15
4
);

(3)在y轴上是存在点M,能够使得△ADM是直角三角形.理由如下:
∵y=x2+2x-3=y=(x+1)2-4,
∴顶点D的坐标为(-1,-4),
∵A(-3,0),
∴AD2=(-1+3)2+(-4-0)2=20.
设点M的坐标为(0,t),分三种情况进行讨论:
①当A为直角顶点时,如图3①,
由勾股定理,得AM2+AD2=DM2,即(0+3)2+(t-0)2+20=(0+1)2+(t+4)2
解得t=
3
2

所以点M的坐标为(0,
3
2
);
②当D为直角顶点时,如图3②,
由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t-0)2
解得t=-
7
2

所以点M的坐标为(0,-
7
2
);
③当M为直角顶点时,如图3③,
由勾股定理,得AM2+DM2=AD2,即(0+3)2+(t-0)2+(0+1)2+(t+4)2=20,
解得t=-1或-3,
所以点M的坐标为(0,-1)或(0,-3);
综上可知,在y轴上存在点M,能够使得△ADM是直角三角形,此时点M的坐标为(0,
3
2
)或(0,-
7
2
)或(0,-1)或(0,-3).
点评:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•攀枝花)-5的相反数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)下列计算中,结果正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=
a
x
与y=bx+c在同一直角坐标系内的大致图象是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)若分式
x2-1x+1
的值为0,则实数x的值为
1
1

查看答案和解析>>

同步练习册答案