精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,已知直线l的解析式是y=
4
3
x-4
,并且与x轴、y轴分别交于A、B两点.一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l相切时,则该圆运动的时间为(  )
A、6秒或10秒
B、6秒或16秒
C、3秒或16秒
D、3秒或6秒
分析:先求得AB两点的坐标,再分两种情况:圆心C在点B上方和下方,可证出△BDE∽△BOA,△BFG∽△BAO,根据相似三角形的性质,求得BE,BF,再根据圆的移动速度,求出移动的时间.
解答:精英家教网解:令x=0,得y=-4;
令y=0,解得x=3;
∴A(3,0),B(0,-4),
∴AB=5,
∵DE⊥l,GF⊥l,
∴△BDE∽△BOA,△BFG∽△BAO,
DE
OA
=
BE
AB
GF
OA
=
BF
AB

1.5
3
=
BE
5
1.5
3
=
BF
5

解得BE=2.5,BF=2.5,
∴圆移动的距离为3或8,
∵圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,
∴移动的时间为6s或16s.
故选B.
点评:本题是一道关于一次函数的综合题,考查了切线的性质和一次函数的图象与几何变换,掌握分类讨论思想是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.
(1)直接写出直线L的解析式;
(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;
(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角精英家教网三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图所示,已知直线a∥b,被直线L所截,如果∠1=69°36′,那么∠2=
69
36
分.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知直线AB过点C(1,2),且与x轴、y轴分别交于点A、B,CD⊥x轴于D,CE⊥y轴于E,CF交y轴于G,交x轴于F.(F在原点O的左侧)
(1)当直线AB的位置正好使得△ACD≌△CBE时,求A点的坐标及直线AB的解析式.
(2)若S四边形ODCE=S△CDF,当直线AB的位置正好使得FC⊥AB时,求A点的坐标及BC的长.
(3)在(2)成立的前提下,将△FOG延y轴对折得△F′O′G′(对折后F、O、G的对应点分别为F′、O′、G′),将△F′O′G′沿x轴正方向精英家教网平移,设平移过程中△F′O′G′与四边形ODCE重叠部分面积为y,OO′的长为x(0≤x≤1),求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知直线y=kx-2经过M点,求此直线与x轴交点坐标和直线与两坐标轴围成三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示:已知直线y=
1
2
x
与双曲线y=
k
x
(k>0)
交于A、B两点,且点A的横坐标为4.
(1)求k的值;
(2)过A点作AC⊥x轴于C点,求△AOC的面积.

查看答案和解析>>

同步练习册答案