精英家教网 > 初中数学 > 题目详情
如图,已知Rt△ABC,∠ACB=90°,点O为斜边AB上一点,以点O为圆心、OA为半径的圆与BC相切于点D,精英家教网与AB相交于点E,与AC相交于点F,连接OD.
(1)求证:AD平分∠BAC;
(2)若∠BAD=22.5°,⊙O的半径为4,求阴影部分的面积.(结果保留π)
分析:(1)利用切线BC的性质求得∠ODB=90°,再根据已知条件∠ACB=90°,来证明OD∥AC;然后由两直线平行内错角相等知∠1=∠3;最后由等腰三角形AOD的两个底角∠1=∠2及等量代换证明AD平分∠BAC;
(2)由圆周角定理求得∠EOD=2∠BAD=45°;然后利用扇形面积公式=
n π•42
360°
来求阴影部分的面积.
解答:精英家教网(1)证明:∵⊙O与BC相切于点D,
∴OD⊥BC,
∴∠ODB=90°(1分)
∵∠ACB=90°,
∴∠ODB=∠ACB(2分)
∴OD∥AC(3分)
∴∠1=∠3(4分)
∵OD=OA,
∴∠1=∠2(5分)
∴∠2=∠3,即AD平分∠BAC(6分)

(2)解:∵∠BAD=22.5°,
∴∠EOD=45°(7分)
S阴影=
45°π•42
360°
(8分)
点评:本题考查了切线的性质、圆周角定理及扇形的面积公式.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知Rt△ABC,AB=AC,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别交AB,BC于点E、F,CD=CG.
(1)请以图中的点为顶点(不增加其他的点)分别构造两个菱形和两个等腰梯形.那么,构成菱形的四个顶点是
B,E,D,F
E,D,C,G
;构成等腰梯形的四个顶点是
B,E,D,C
E,D,G,F

(2)请你各选择其中一个图形加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC是⊙O的内接三角形,∠BAC=90°,AH⊥BC,垂足为D,过点B作弦BF交AD于点精英家教网E,交⊙O于点F,且AE=BE.
(1)求证:
AB
=
AF

(2)若BE•EF=32,AD=6,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于E,PF⊥AC交AC延长线于F,D为BC中点,连接DE,DF.求证:DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC中,∠CAB=30°,BC=5.过点A做AE⊥AB,且AE=15,连接BE交AC于点P.
(1)求PA的长;
(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC中∠A=90°,AB=3,AC=4.将其沿边AB向右平移2个单位得到△FGE,则四边形ACEG的面积为
14
14

查看答案和解析>>

同步练习册答案