精英家教网 > 初中数学 > 题目详情
已知:如图,在⊙O中,AB,CD是两条直径,M为OB上一点,CM的延长线交⊙O于点E,连结DE.
(1)求证:AM•MB=EM•MC;
(2)若M为OB的中点,AB=16,DE=2
15
时,求MC的长.
分析:(1)首先连接AC,EB,易证得△AMC∽△EMB,然后由相似三角形的对应边成比例,即可证得AM•MB=EM•MC;
(2)由CD是直径,可得∠DEC=90°,然后由勾股定理求得EC的长,设CM=x,则EM=14-x,由AM•MB=EM•MC;可得方程12×4=x(14-x),解此方程即可求得答案.
解答:(1)证明:连接AC,EB,…(1分)
则∠CAM=∠BEM,…(1分)
又∵∠AMC=∠EMB,
∴△AMC∽△EMB,…(1分)
AM
EM
=
MC
MB

即AM•MB=EM•MC;…(2分)

(2)解:∵DC为⊙O的直径,
∴∠DEC=90°,…(1分)
∴EC=
DC2-DE2
=
162-(2
15
)
2
=14
,…(1分)
∵OA=OB=5,M为OB的中点,
∴AM=12,BM=4.
设CM=x,则EM=14-x.
由(1)AM•MB=EM•MC,
得 12×4=x(14-x),…(1分)
解得:x1=6,x2=8,
∴CM=6或8. …(2分)
点评:此题考查了相似三角形的判定与性质、圆周角定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、已知:如图,在?ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.
(1)找出图中所有的互相全等的三角形;
(2)求证:∠ADE=AED.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算:(
2
-1)-1+
8
-6sin45°+(-1)2011

(2)先化简,再求值:
x2-2xy+y2
x2-xy
÷(
x
y
-
y
x
)
,其中x=
2
-1,y=1

(3)如图,已知:如图,在?ABCD中,BE=DF.求证:△ABE≌△CDF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在△ABC中,AB=AC,点P是△ABC的中线AD上的任意一点(不与点A重合.将线段AP绕点A逆时针旋转到AQ,使∠PAQ=∠BAC,连接BP,CQ
(1)求证:BP=CQ.
(2)设直线BP与直线CQ相交于点E,∠BAC=α,∠BEC=β,
①若点P在线段AD上移动(不与点A重合),则“α与β之间有怎样的数量关系?并说明理由.
②若点P在直线AD上移动(不与点A重合).则α与β之间有怎样的数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•密云县一模)已知:如图,在△ABC中,∠A=∠B=30°,D是AB 边上一点,以AD为直径作⊙O恰过点C.
(1)求证:BC所在直线是⊙O的切线;
(2)若AD=2
3
,求弦AC的长.

查看答案和解析>>

同步练习册答案