【题目】二次函数的图象与轴交于、两点,点,与轴交于点.
(1)_________,_________;
(2)如图1,是轴上一动点,点在轴上,连接,求的最小值;
(3)如图2,点在抛物线上,若,求点的坐标.
【答案】(1)1,-3;(2)4;(3),,,,
【解析】
(1) 将、分别代入得到二元一次方程组,解方程求得a和c即可.
(2)如图1中,作于.先说明,然后在中,有,由垂线段最短可知,当D、P、H共线时,最小,最后求得最小值即可;
(3)如图2中,取点,作于,易知.由,过点E作BC的平行线交抛物线于M1、M2,则则,,再求出直线M1M2的解析式,然后联立解方程组即;同理可求出M3、M4的坐标.
解:(1)把,代入
得到,,解得
故答案为1,-3.
(2)如图1中,作于.
∵,,
∴,
在中,.
∵,
根据垂线段最短可知,当、、共线时最小,最小值为,
在中,∵,,∴,
∴的最小值为.
(3)如图2中,取点,作于,易知
∵
∴过点作的平行线交抛物线于,,则,,
∵直线的解析式为,
∴直线的解析式为,
由解得或
∴,
根据对称性可知,直线关于直线的对称的直线与抛物线的交点、也满足条件,
易知直线的解析式为,
由解得或
∴,,
综上所述,满足条件的点的坐标为:,
,,.
科目:初中数学 来源: 题型:
【题目】已知抛物线交轴于点(0,0)和点,抛物线交轴于点(0,0)和点,抛物线交轴于点(0,0)和点…按此规律,抛物线交轴于点(0,0)和点(其中n为正整数),我们把抛物线称为系数为的“关于原点位似”的抛物线族.
(1)试求出的值;
(2)请用含n的代数式表示线段的长;
(3)探究下列问题:
①抛物线的顶点纵坐标与a、n有何数量关系?请说明理由;
②若系数为a的“关于原点位似”的抛物线族的各顶点坐标记为(T,S),请直接写出S和T所满足的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点A(a,0)为x轴上一动点,点M(1,﹣1)、点N(3,﹣4),连接AM、MN,点N关于直线AM的对称点为N′.
(1)若a=2,在图1中画出线段MN关于直线AM的对称图形MN′(保留作图痕迹),直接写出点N′的坐标 ;
(2)若a>0,连接AN、AN′,当点A运动到∠N′AN=90°时,点N′恰好在双曲线y=上(如图2),求k的值;
(3)点A在x轴上运动,若∠N′MN=90°,此时a的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.
(1)求:甲、乙玩具的进货单价各是多少元?
(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).
(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;
(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,直线交坐标轴于A、C两点,抛物线过A、C两点.
(1)求抛物线的解析式;
(2)若点P为抛物线位于第三象限上一动点,连接PA,PC,试问△PAC是否存在最大值,若存在,请求出△APC取最大值以及点P的坐标,若不存在,请说明理由;
(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCO为矩形,点A在反比例函数y=(x>0)的图象上,点C在反比例函数y=- (x<0)的图象上,若点B在y轴上,则点A的坐标为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
①的值为 ;
②∠AMB的度数为 .
(2)类比探究
如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com