【题目】若一次函数y=kx+b与反比例函数y=的图象如图所示,则关于x的不等式kx+b﹣≤﹣2的解集为( )
A. 0<x≤2或x≤﹣4 B. ﹣4≤x<0或x≥2
C. ≤x<0或x D. x或
【答案】C
【解析】
根据图形找出点的坐标,利用待定系数法求出一次函数和反比例函数解析式,将一次函数图象向上移2个单位长度找出新的一次函数解析式,联立新一次函数解析式和反比例函数解析式成方程组,通过解方程组求出交点坐标,结合函数图象即可得出不等式的解集.
解:将(-2,0)、(0,-2)代入y=kx+b,
,解得: ,
∴一次函数解析式为y=-x-2.
当x=2时,y=-x-2=-4,
∴一次函数图象与反比例函数图象的一个交点坐标为(2,-4),
∴k=2×(-4)=-8,
∴反比例函数解析式为y=-.
将一次函数图象向上移2个单位长度得出的新的函数解析式为y=-x.
联立新一次函数及反比例函数解析式成方程组,
,解得: ,.
观察函数图象可知:当-2<x<0或x>2时,新一次函数图象在反比例函数图象下方,
∴不等式-x≤-的解集为-2≤x<0或x≥2.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.
(1)求k1,k2,b的值;
(2)求△AOB的面积;
(3)请直接写出不等式≥k2x+b的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,Rt△ABC中,∠C=90°,∠BAC=30°,延长CA至D点,使AD=AB.求:
(1)求∠D及∠DBC;
(2)求tanD及tan∠DBC;
(3)请用类似的方法,求tan22.5°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为cm,A,C两点间的距离为cm.
小聪根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 | 2.83 | 2.24 | 0 | |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | 4.90 | 5.48 | 6 | /tr>
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,),(x,),并画出函数,的图象;
(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为______cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线。如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,-3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的“蛋圆”的切线的解析式为__________________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动.若△POE为等腰三角形,请写出所有符合要求的点P的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知正比例函数y=的图象与反比例函数y=的图象交于A(a,﹣2),B两点.
(1)反比例函数的解析式为 ,点B的坐标为 ;
(2)观察图象,直接写出﹣<0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)
(1)转动转盘一次,求转出的数字是-2的概率;
(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com