【题目】如图三角形ABC中,AB=3,AC=4,以BC为边向三角形外作等边三角形BCD,连AD,则当∠BAC=_____度时,AD有最大值_____.
【答案】120,7.
【解析】
如图,在直线AC的上方作等边三角形△OAC,连接OD.只要证明△ACB≌△OCD,推出OD=AB=3,推出点D的运动轨迹是以O为圆心OD长为半径的圆,推出当D、O、A共线时,AD的值最大;
解:如图,
在直线AC的上方作等边三角形△OAC,连接OD.
∵△BCD,△AOC都是等边三角形,
∴CA=CO,CB=CD,∠ACO=∠BCD,
∴∠ACB=∠OCD,
在△ACB和∠OCD中,
,
∴△ACB≌△OCD,
∴OD=AB=3,
∴点D的运动轨迹是以O为圆心OD长为半径的圆,
∴当D、O、A共线时,AD的值最大,最大值为OA+OD=4+3=7.
∵△ACB≌△OCD,
∴∠CAB=∠DOC,
∵当D、O、A共线时,∠DOC=180°-60°=120°,
∴当∠BAC=120度时,AD有最大值为7.
故答案为120,7.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
(1)求该抛物线的解析式;
(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在5次打靶测试中命中的环数如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
平均数 | 众数 | 中位数 | 方差 | |
甲 | 8 | | 8 | 0.4 |
乙 | | 9 | | 3.2 |
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 .(填“变大”、“变小”或“不变”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在中,,,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N再分别以MN为圆心,大于的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中正确的有________.
①AD是的平分线;②;③点D在AB的中垂线上;④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2015本溪,第9题,3分)如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线()上,则k的值为( )
A. 4 B. ﹣2 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知四边形ABCD的四条边相等,四个内角都等于90°,点E是CD边上一点,F是BC边上一点,且∠EAF=45°.
(1)求证:BF+DE=EF;
(2)若AB=6,设BF=x,DE=y,求y关于x的函数解析式,并写出x的取值范围;
(3)过点A作AH⊥FE于点H,如图(2),当FH=2,EH=1时,求△AFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>;④a-b+c>0;⑤若, 且, 则.其中正确的有( ).
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,市场调研表明;当销售价定为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com