精英家教网 > 初中数学 > 题目详情
如图,△ABC与△DOE是位似图形,A(0,3),B(-2,0),C(1,0),E(6,0),△ABC与△DOE的位似中心为M.
(1)写出D点的坐标;
(2)在图中画出M点,并求M点的坐标.
分析:(1)首先过点D作DH⊥OE于点H,由△ABC与△DOE是位似图形,A(0,3),B(-2,0),C(1,0),E(6,0),可得BC=3,OE=6,△AOB∽△DOH,即可求得位似比,继而求得答案;
(2)首先连接DA并延长,交x轴于点M,则点M即为△ABC与△DOE的位似中心;然后根据位似图形的性质,可得MO:MH=1:2,继而求得答案.
解答:解:(1)过点D作DH⊥OE于点H,
∵△ABC与△DOE是位似图形,A(0,3),B(-2,0),C(1,0),E(6,0),
∴BC=3,OE=6,△AOB∽△DOH,
∴位似比为:3:6=1:2,
∴OH=2OB=4,DH=2OA=6,
∴D点的坐标为:(4,6);

(2)连接DA并延长,交x轴于点M,则点M即为△ABC与△DOE的位似中心;
则MO:MH=1:2,
设MO=x,则MH=x+4,
∴x:(x+4)=1:2,
解得:x=4,
∴M点的坐标为(-4,0 ).
点评:此题考查了位似图形的定义与性质.此题难度适中,注意掌握辅助线的作法,注意位似图形是特殊的相似图形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC与△ADC关于直线AC对称,连接BD,若已知四边形ABCD的面积是125,AC=25,则BD的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC与△ADE是两个大小不同的等腰直角三角形,B、C、E在同一条直线上,连接CD.
(1)证明:△ABE≌△ACD;
(2)CD与BE是否垂直?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为(  )
A、
3
:1
B、
2
:1
C、5:3
D、不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC与△ABD都是等边三角形,点E,F分别在BC,AC上,BE=CF,AE与BF交于点G.
(1)求∠AGB的度数;
(2)连接DG,求证:DG=AG+BG.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、如图,△ABC与△A′B′C′关于直线MN对称,△A′B′C′与△A″B″C″关于直线EF对称.
(1)画出△ABC和直线EF;
(2)若直线MN和EF相交于点O,直线MN、EF所夹的锐角设为α,猜想∠BOB″与α之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案