【题目】如图,直线与双曲线交于A、B两点,连接OA、OB,轴于点M,轴于点N,有以下结论:①;②;③则;④当时,.其中结论正确的是___________
【答案】①②③④
【解析】
①②设A(,),B(,),联立y=-x+b与y=得,则=k,又=k,比较可知=,同理可得=,即ON=OM,AM=BN,可证结论;
③作OH⊥AB,垂足为H,根据对称性可证△OAM≌△OAH≌△OBH≌△OBN,可证S△AOB=k;
④延长MA,NB交于G点,可证△ABG为等腰直角三角形,当AB=时,GA=GB=1,则ON-BN=GN-BN=GB=1;
设A(,),B(,),代入y=中,得==k,
联立,
得,
则=k,又=k,
∴=,
同理=k,
可得=,
∴ON=OM,AM=BN,
∵∠AMO=∠BNO=90,
∴△AOM≌△BON,②正确;
∴OA=OB,①正确;
③作OH⊥AB,垂足为H,
∵OA=OB,∠AOB=45°,且△AOM≌△BON,
∴∠MOA=∠BON=22.5°,∠AOH=∠BOH=22.5°,
∴△OAM≌△OAH≌△OBH≌△OBN,
∴S△AOB=S△AOH+S△BOH=S△AOM+S△BON=,正确;
④延长MA,NB交于G点,
∵NG=OM=ON=MG,BN=AM,
∴GB=GA,
∴△ABG为等腰直角三角形,
当AB时,GA=GB=1,
∴ON-BN=GN-BN=GB=1,正确;
综上,①②③④都正确.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的顶点A,B在x轴的负半轴上,反比例函数y=(k1≠0)在第二象限内的图象经过正方形ABCD的顶点D(m,2)和BC边上的点G(n,),直线y=k2x+b(k2≠0)经过点D,点G,则不等式≤k2x+b的解集为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料并解答下列问题:如图1,把平面内一条数轴绕原点逆时针旋转角得到另一条数轴轴和轴构成一个平面斜坐标系
规定:过点作轴的平行线,交轴于点,过点作轴的平行线,交轴于点,若点在轴对应的实数为,点在轴对应的实数为,则称有序实数对为点在平面斜坐标系中的斜坐标.如图2,在平面斜坐标系中,已知,点的斜坐标是,点的斜坐标是
(1)连接,求线段的长;
(2)将线段绕点顺时针旋转到(点与点对应),求点的斜坐标;
(3)若点是直线上一动点,在斜坐标系确定的平面内以点为圆心,长为半径作,当⊙与轴相切时,求点的斜坐标,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示, 在平面直角坐标系中, 边长为的正方形的边在轴上, 交轴于点,一次函数的图像经过点,且与线段始终有交点(含端点),若,则的值可能为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】年春节期间,新型冠状病毒肆虐,突如其来的疫情让大多数人不能外出,网络销售成为这个时期最重要的一种销售方式。某乡镇贸易公司因此开设了一家网店,销售当地某种农产品。已知该农产品成本为每千克元,调查发现,每天销售量与销售单价(元)满足如图所示的函数关系(其中)
(1)求与之间的函数关系式并标出自变最的取值范围;
(2)当销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与x轴交于点A,B(1,0),与轴交于点C(0,3),对称轴为直线.
(1)求抛物线的解析式及点A的坐标;
(2)在对称轴上是否存在一点M,使得△BCM周长最小?若存在,求出△BCM周长;若不存在,请说明理由;
(3)若点P是抛物线上一动点,从点C沿抛物线向点A运动,过点P作PD//轴,交AC于点D,当△ADP是直角三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作于点G,交AD于点F.
(1)求证:;
(2)如图(2),当点E运动到AB的中点时,连接DG,求证:;
(3)如图(3),在(2)的条件下,过点C作于点H,分别交AD,BF于点M,N,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2014河南22题)
(1)问题发现
如图①,和均为等边三角形,点A、D、E在同一条直线上,连接BE;
填空:
①的度数为__________;
②线段AD、BE之间的数量关系为__________.
(2)拓展探究
如图②,和均为等腰直角三角形,,点A、D、E在同一条直线上,CM为中DE边上的高,连接BE.请判断的度数及线段CM、AE、BE之间的数量关系,并说明理由;
(3)解决问题
如图③,在正方形ABCD中,,若点P满足,且,请直接写出点A到BP的距离.
图① 图② 图③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点A且与x轴平行的直线交抛物线y=(x+1)2于B,C两点,若线段BC的长为6,则点A的坐标为( )
A.(0,1)B.(0,4.5)C.(0,3)D.(0,6)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com