【题目】如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F.
(1)求证:DE是⊙O的切线;
(2)若DE=4,⊙O的半径为5.求BF的长.
【答案】(1)见解析;(2)5.
【解析】
(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是O的切线;
(2)在Rt△ABC中,运用勾股定理可求得AC的长度,运用切割线定理可将AE的长求出,根据△AED∽△ABF,可将BF的长求出.
证明:(1)连接OD,BC,OD与BC相交于点G,
∵D是弧BC的中点,
∴OD垂直平分BC,
∵AB为⊙O的直径,
∴AC⊥BC,
∴OD∥AE,
∵DE⊥AC,
∴OD⊥DE,
∵OD为⊙O的半径,
∴DE是⊙O的切线;
(2)由(1)知:OD⊥BC,AC⊥BC,DE⊥AC,
∴四边形DECG为矩形,
∴CG=DE=4,
∴BC=8,
∵⊙O的半径为5,
∴AB=10,
∴AC==6,
OG=AC=3,GD=2,在矩形GDEC中 CE=GD=2,
∴AE=8.
∵D为弧BC的中点,
∴∠EAD=∠FAB,
∵BF切⊙O于B,
∴∠FBA=90°.
又∵DE⊥AC于E,
∴∠E=90°,
∴∠FBA=∠E,
∴△AED∽△ABF,
∴,
∴
∴BF=5.
科目:初中数学 来源: 题型:
【题目】小明在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,36°.已知大桥BC与地面在同一水平面上,其长度为100m.请求出热气球离地面的高度(结果保留小数点后一位).参考数据:tan36°≈0.73.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三位数满足条件:其十位数字是百位数字的两倍与个位数字的差,则称这样的三位数为“十全数”,将“十全数”s的百位数字与十位数字交换位置,交换后所得的新数叫做s的“十美数”,如231是一个“十全数”,321是231的“十美数”
(1)证明:任意一个“十全数”s的“十美数”都能被3整除;
(2)已知m为“十全数”,n是m的“十美数”,若m的两倍与n的差能被13整除,求m的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90,连接AE、BD交于点O. AE与DC交于点M,BD与AC交于点N.
(1)如图①,求证:AE=BD;
(2)如图②,若AC=DC,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正边形ABCD……X”,请你作出猜想:当∠AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BCAD=AE2;④S△ABC=4S△ADF.其中正确的个数有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠2,则下列条件中不一定能使△ABC≌△ABD的是( )
A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com