精英家教网 > 初中数学 > 题目详情
11.如图,菱形ABCD中,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:CE=CF.

分析 连接AC,根据菱形的性质可得AC平分∠DAE,再根据角平分线的性质可得CE=FC.

解答 证明:连接AC,
∵四边形ABCD是菱形,
∴AC平分∠DAE,
∵CE⊥AB,CF⊥AD,
∴CE=FC.

点评 此题主要考查了菱形的性质,以及角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.如果a、b互为相反数,x、y互为倒数,那么(a+b)xy+a2-b2+(-xy)2013=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有-个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为(  )
A.8(x-1)<5x+12<8B.0<5x+12<8xC.0<5x+12-8(x-1)<8D.8x<5x+12<8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列定理中,没有逆定理的是(  )
A.直角三角形的两个锐角互余B.等腰三角形两腰上的高相等
C.全等三角形的周长相等D.等边三角形的三个角都相等

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.连接DE,若∠ADE=3∠CDE,∠AED=60°.
(1)求证:∠ABC=∠ADC;
(2)求∠CDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:$\sqrt{(-\frac{1}{2})^{2}}$×(-$\sqrt{2}$)2-$\root{3}{27}$÷($\root{3}{-\frac{1}{3}}$)3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,点F在BC的延长线上,且∠CEF=∠A.求证:DE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.对多项式24ab2-32a2bc进行因式分解时提出的公因式是8ab.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:$\sqrt{(-4)^{2}}$+$\root{3}{-64}$×(-$\frac{1}{2}$)2-$\root{3}{-27}$.

查看答案和解析>>

同步练习册答案