精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.
(1)写出A、B、D三点坐标;
(2)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式.
分析:(1)求出OA、OB,根据勾股定理求出OC,根据垂径定理求出OD=OC,即可得出答案;
(2)连接PQ,求出∠CPO,求出∠QPM,求出PM,得出M的坐标,求出MN=2ON,根据勾股定理求出ON,得出N的坐标,设直线MN的解析式是y=kx+b,把M、N的坐标代入求出即可.
解答:(1)解:∵P(1,0),⊙P的半径是2,
∴OA=2-1=1,OB=2+1=3,
在Rt△COP中,PC=2,OP=1,由勾股定理得:OC=
3

由垂径定理得:OD=OC=
3

∴A(-1,0),B(3,0),C(0,
3
),D(0,-
3
).

(2)解:连接PQ,
在Rt△COP中sin∠CPO=
3
2

∴∠CPO=60°,
∵Q为弧BC的中点,
∴∠CPQ=∠BPQ=
1
2
(180°-60°)=60°,
∵MN切⊙P于Q,
∴∠PQM=90°,
∴∠QMP=30°,
∵PQ=2,
∴PM=2PQ=4,
在Rt△MON中,MN=2ON,
∵MN2=ON2+OM2
∴(2ON)2=ON2+(1+4)2
∴ON=
5
3
3

∴M(5,0),N(0,
5
3
3
),
设直线MN的解析式是y=kx+b,
代入得:
0=5k+b
5
3
3
=b

解得:k=-
3
3
,b=
5
3
3

∴直线MN的解析式是y=-
3
3
x+
5
3
3
点评:本题考查了用待定系数法求一次函数的解析式,勾股定理,含30度角的直角三角形等知识点的运用,关键是求出M、N的坐标,用的数学思想是方程思想,题目比较好,难度也适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案