精英家教网 > 初中数学 > 题目详情
甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.
(1)写出乙船在逆流中行驶的速度;
(2)求甲船在逆流中行驶的路程;
(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;
(4)求救生圈落入水中时,甲船到A港的距离.

【答案】分析:(1)由速度=路程÷时间列式求解;
(2)因为甲船、乙船在逆流中行驶的速度相同,只需由图示得出甲船在逆流中行驶的时间.
(3)观察图形,要分成3段讨论,每一段中已知两点,可用待定系数法确定一次函数的解析式.
(4)根据等量关系:救生圈落入水中后,船顺流行驶的路程=船逆流行驶的路程+救生圈漂流的路程,据此即可解答.
解答:解:(1)乙船在逆流中行驶的速度为6km/h.(2分)

(2)甲船在逆流中行驶的路程为6×(2.5-2)=3(km).(4分)

(3)方法一:
设甲船顺流的速度为akm/h,
由图象得2a-3+(3.5-2.5)a=24,
解得a=9.(5分)
当0≤x≤2时,y1=9x,
当2≤x≤2.5时,设y1=-6x+b1
把x=2,y1=18代入,得b1=30,
∴y1=-6x+30,
当2.5≤x≤3.5时,设y1=9x+b2
把x=3.5,y1=24代入,得b2=-7.5,
∴y1=9x-7.5.(8分)
方法二:
设甲船顺流的速度为akm/h,
由图象得2a-3+(3.5-2.5)a=24,
解得a=9,(5分)
当0≤x≤2时,y1=9x,
令x=2,则y1=18,
当2≤x≤2.5时,y1=18-6(x-2),
即y1=-6x+30,
令x=2.5,则y1=15,
当2.5≤x≤3.5时,y1=15+9(x-2.5),
y1=9x-7.5.(8分)

(4)水流速度为(9-6)÷2=1.5(km/h),
设甲船从A港航行x小时救生圈掉落水中.
根据题意,得9(2-x)=1.5(2.5-x)+3,
解得x=1.5,
1.5×9=13.5,
即救生圈落水时甲船到A港的距离为13.5km.(10分)
参考公式:
船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.
点评:此题为一次函数的应用,渗透了函数与方程的思想,要求学生要提高阅读理解水平,从中挖掘有用信息.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、甲船从A港出发顺流匀速驶向B港,行至某处,发现船上-救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.
(1)写出乙船在逆流中行驶的速度.
(2)求甲船在逆流中行驶的路程.
(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式.
(4)求救生圈落入水中时,甲船到A港的距离.
参考公式:船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.
(1)写出乙船在逆流中行驶的速度;
(2)求甲船在逆流中行驶的路程;
(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;
(4)求救生圈落入水中时,甲船到A港的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•海陵区二模)甲船从A港出发顺流匀速驶向B港,乙船同时从B港出发逆流匀速驶向A港.甲船行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.已知甲、乙两船在静水中的速度相同,救生圈落入水中漂流的速度和水流速度都等于1.5km/h.甲、乙两船离A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.
(1)甲船在顺流中行驶的速度为
9
9
km/h,m=
15
15

(2)①当0≤x≤4时,求y2与x之间的函数关系式;②甲船到达B港时,乙船离A港的距离为多少?
(3)救生圈在水中共漂流了多长时间?

查看答案和解析>>

科目:初中数学 来源:2012届山东省东阿县姚寨中学九年级中考数学试卷1(带解析) 题型:解答题

甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.

(1)写出乙船在逆流中行驶的速度.
(2)求甲船在逆流中行驶的路程.
(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式.
(4)求救生圈落入水中时,甲船到A港的距离.
【参考公式:船顺流航行的速度船在静水中航行的速度+水流速度,船逆流航行的速度船在静水中航行的速度水流速度.】

查看答案和解析>>

科目:初中数学 来源:2012年江苏省泰州市海陵区中考数学二模试卷(解析版) 题型:解答题

甲船从A港出发顺流匀速驶向B港,乙船同时从B港出发逆流匀速驶向A港.甲船行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.已知甲、乙两船在静水中的速度相同,救生圈落入水中漂流的速度和水流速度都等于1.5km/h.甲、乙两船离A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.
(1)甲船在顺流中行驶的速度为______km/h,m=______;
(2)①当0≤x≤4时,求y2与x之间的函数关系式;②甲船到达B港时,乙船离A港的距离为多少?
(3)救生圈在水中共漂流了多长时间?

查看答案和解析>>

同步练习册答案