精英家教网 > 初中数学 > 题目详情
如图,图(1)是某中学九年级(一)班全体学生对三种蔬菜的喜欢人数的频数分布直方图.解答下列问题:
(1)九年级(一)班总人数为______人;
(2)哪种蔬菜的喜欢人数频率最高______,该蔬菜的频率为______;
(3)请根据频数分布直方图中的数据,补全图(2)中的扇形统计图;
(4)根据上述统计的结果,请你为食堂的进货提出一条合理化的建议.
【答案】分析:将各组人数相加:12+18+30=60,所以总人数是60.观察条形图可知,空心菜一组人数最多,为30人,所以喜欢空心菜的频率最高为50%.根据条形图可知,喜欢白菜一组的频率为30%,菠菜的为20%.据此可作出扇形图.根据结论可得(4)答案:建议食堂购买菠菜、大白菜、空心菜时按2:3:5进货.
解答:解:(1)总人数=12+18+30=60;

(2)喜欢空心菜的人数频率最高,×100%=50%;

(3)喜欢白菜一组的频率=18÷60=30%;
喜欢菠菜一组的频率=12÷60=20%;
如右图:

(4)建议食堂购买菠菜、大白菜、空心菜时按2:3:5进货.
点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,图(1)是某中学九年级(一)班全体学生对三种蔬菜的喜欢人数的频数分布直方图.解答下列问题:精英家教网
(1)九年级(一)班总人数为
 
人;
(2)哪种蔬菜的喜欢人数频率最高
 
,该蔬菜的频率为
 

(3)请根据频数分布直方图中的数据,补全图(2)中的扇形统计图;
(4)根据上述统计的结果,请你为食堂的进货提出一条合理化的建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•甘孜州)如图,图(1)是某中学九年级(一)班全体学生对三种蔬菜的喜欢人数的频数分布直方图.

回答下列问题:
(1)九年级(一)班总人数为
60
60
人;
(2)哪种蔬菜的喜欢人数频率最高?并求出该频率;
(3)请根据频数分布直方图中的数据,补全图(2)中的扇形统计图.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,图①、图②中是某中学七年一班全体学生对三种蔬菜喜欢人数的频数分布直方图、扇形统计图.
依据图①、图②提供的信息解答下列各题:
(1)七年一班总人数为
60
60

(2)补全这两个统计图;
(3)根据以上统计的结果,请你为食堂的购菜计划提出一条合理化的建议.

查看答案和解析>>

科目:初中数学 来源:第28章《概率初步》中考题集(30):28.2 等可能情况下的概率计算(解析版) 题型:解答题

实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?
建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:
在不透明的口袋中装有红,黄,白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?
为了找到解决问题的办法,我们可把上述问题简单化:
(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?
假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);
(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?
我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)
(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?
我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):…
(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?
我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10-1)=28(如图⑩)

模型拓展一:在不透明的口袋中装有红,黄,白,蓝,绿五种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是______;
(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是______;
(3)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是______.
模型拓展二:在不透明口袋中装有m种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是______.
(2)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是______.
问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;
(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生?

查看答案和解析>>

科目:初中数学 来源:2013年山东省青岛市中考数学模拟试卷(十五)(解析版) 题型:解答题

实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?
建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:
在不透明的口袋中装有红,黄,白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?
为了找到解决问题的办法,我们可把上述问题简单化:
(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?
假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);
(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?
我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)
(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?
我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):…
(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?
我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10-1)=28(如图⑩)

模型拓展一:在不透明的口袋中装有红,黄,白,蓝,绿五种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是______;
(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是______;
(3)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是______.
模型拓展二:在不透明口袋中装有m种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是______.
(2)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是______.
问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;
(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生?

查看答案和解析>>

同步练习册答案