【题目】课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.
(1)求证:△ADC≌△CEB;
(2)已知DE=35cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).
【答案】(1)见解析;(2)砌墙砖块的厚度a为5cm.
【解析】
(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.
(2)利用(1)中全等三角形的性质进行解答.
(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS);
(2)解:由题意得:∵一块墙砖的厚度为a,
∴AD=4a,BE=3a,
由(1)得:△ADC≌△CEB,
∴DC=BE=3a,AD=CE=4a,
∴DC+CE=BE+AD=7a=35,
∴a=5,
答:砌墙砖块的厚度a为5cm.
科目:初中数学 来源: 题型:
【题目】如图(1),在等边三角形中,是边上的动点,以为一边,向上作等边三角形,连接.
(1)和全等吗?请说明理由;
(2)试说明:;
(3)如图(2),将动点运动到边的延长线上,所作三角形仍为等边三角形,请问是否仍有?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AB∥CD,∠BAD,∠ADC 的平分线AE,DE相交于点E.
(1)证明:AE⊥DE;
(2)如图2,过点E作直线AB,AD,DC的垂线,垂足分别为F,G,H,证明:EF=EG=EH;
(3)如图3,过点E的直线与AB,DC分别相交于点B,C(B、C在AD的同侧)
①求证: E为线段BC的中点;
②若S△ADE=8, S△ABE=2,求△CDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、E在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:(要求保留作图痕迹,不写作法)
(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);
(2)连结BE,若AC=10,AB=6,求△ABE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A(0,8)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.
(1)若AB∥x轴,求t的值;
(2)当t=6时,坐标平面内有一点M(不与A重合),使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标;
(3)在(2)的条件下,在x轴上是否存在点D,使O、A、B、D为顶点的四边形面积是104?如果存在,请求出点D的坐标,如果不存在,请说明理由;
(4)设点A关于x轴的对称点为A,连接A′B,在点P运动的过程中∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地之间的铁路交通设有特快列车和普通快车两种车次,某天一辆普通快车从甲地出发匀速向乙地行驶,同时另一辆特快列车从乙地出发匀速向甲地行驶,两车离甲地的路程S(千米)与行驶时间t(时)之间的函数关系如图所示.
(1)甲地到乙地的路成为________千米,普通快车到达乙地所用时间为_______小时.
(2)求特快列车离甲地的路程s与t之间的函数关系式.
(3)在甲、乙两地之间有一座铁路桥,特快列车到铁路桥后又行驶0.5小时与普通快车相遇,求甲地与铁路桥之间的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.
(1)若∠B=35°,∠ACB=85°,求∠E得度数.
(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com