精英家教网 > 初中数学 > 题目详情
13.从1到10这10个正整数中任取一个,该正整数恰好是3的倍数的概率是$\frac{3}{10}$.

分析 让1到10中3的倍数的个数除以数的总个数即为所求的概率.

解答 解:1到10中,3的倍数有3,6,9三个,
所以正整数恰好是3的倍数的概率是$\frac{3}{10}$,
故答案为:$\frac{3}{10}$.

点评 本题主要考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.如图,将△ABC绕点C(0,1)旋转180°得到△DEC.若点A的坐标为(3,-1),则点D的坐标为(  )
A.(-3,1)B.(-2,2)C.(-3,3)D.(-3,2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列计算中,正确的是(  )
A.x4•x2=x8B.x4÷x2=x6C.(x42=x8D.(3x)2=3x2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在反比例函数y=$\frac{5}{x}$(x>0)的图象上有点P1、P2、P3、P4,P5,它们的横坐标依次为2,4,6,8,10,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,S4,则S1+S2+S3+S4的值为(  )
A.4.5B.4.2C.4D.3.8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.古时候,猎人通过结绳的方法来统计猎物的个数,如图,一位猎人在排列的绳子上从右到左依次打结,满八进一,用来记录一段时间内猎物的数量,由图可知,猎物的数量是153.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在边长都是1的小正方形组成的网格中,A,B,C,P均为格点.
(Ⅰ)线段BC的长等于5$\sqrt{2}$;
(Ⅱ)若点E,F分别为AC,BC上的点,且满足PF=FE=EC,请你借助网格和无刻度直尺,画出满足条件的点E,F,并简要说明你是怎么画的.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,矩形ABCD中,DE交BC于E且DE=AD,AF⊥DE于F,连接BF,求证:∠1=∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图的抛物线是把抛物线y=$\frac{1}{2}$x2平移后经过(0,-1)和(4,-1)两点得到的.
(1)求平移后抛物线的表达式.
(2)求平移后方向和距离.
(3)在平移后的抛物线上取一点P,以P为圆心作半径为2的⊙P,当⊙P与y轴相切时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.【圆的概念】在平面内,线段PA绕它固定的一个端点P旋转一周,另一个端点A所形成的图形叫做圆,如图1所示,换言之,到某个定点等于定长的所有点在同一个圆上.
【拓展延伸】圆心在P(a,b),半径为r的圆的方程可写为:(x-a)2+(y-b)2=r2
例如:圆心在P(-1,-2),半径为5的圆的方程可写为:(x-2)2+(y+1)2=25.
(1)请填空:
①以A(3,0)为圆心,半径为1的圆的方程为:(x-3)2+y2=1;
②以B(-1,-2)为圆心,半径为$\sqrt{3}$的圆的方程为:(x+1)2+(y+2)2=3;
(2)请根据以上材料解决下列问题:
如图2所示,以B(-6,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC,垂足为D,延长BD交y轴于点E,已知∠AOC=$\frac{3}{5}$.
①连接EC,判断EC和⊙B的位置关系,并说明理由;
②在BE上是否存在一点P,使PB=PC=PE=PO?若存在,求出P点坐标,并写出以P为圆心,以PB为半径的⊙P的方程,若不存在,说明理由.

查看答案和解析>>

同步练习册答案