精英家教网 > 初中数学 > 题目详情
如图,梯形OABC中,BC∥AO,∠BAO=90°,B(-3
3
,3),直线OC的解析式为y=-
3
x,将△OBC绕点C顺时针旋转60°后,O到O1,B到B1,得△O1B1C.
(1)求证:点O1在x轴上;
(2)将点O1运动到点M(-4
3
,0),求∠B1MC的度数;
(3)在(2)的条件下,将直线MC向下平移m个单位长度,设直线MC与线段AB交于点P,与线段OC的交于点Q,四边形OAPQ的面积为S,求S与m的函数关系式,并求出m的取值范围.
分析:(1)根据特殊角的三角形函数值、旋转的性质以及等边三角形的判定推知△COO1为等边三角形,则∠COA=∠COO1=60°,即OA与OO1在同一直线上,所以点O1在x轴上.
(2)由旋转的性质、坐标与图形是性质易证B1、C、O三点共线.然后根据点B、C的坐标以及直角梯形的性质证得MC是等腰三角形B1MO的中垂线,最后由等腰三角形“三合一”的性质求得∠B1MC=
1
2
∠BMO=30°;
(3)根据图形知,S四边形OAPQ=S梯形PAQN+S△QNO.然后由梯形的面积公式和三角形的面积公式进行计算.由PQ与边AB有交点来求m的取值范围.
解答:(1)证明:如图1,∵BC∥AO,B(-3
3
,3),
∴点C的纵坐标是3,
又∵直线OC的解析式为y=-
3
x,
∴3=-
3
x,
解得,x=-
3
,则C(-
3
,3)
∴tan∠COA=
3

∴∠COA=60°.
∵根据旋转的性质知,∠OCO1=60°,CO=CO1
∴△COO1为等边三角形,
∴∠COO1=60°
∴∠COA=∠COO1
∴点O1在x轴上.

(2)解:如图2,∵∠COO1=60°,BC∥AO,
∴∠BCO=120°,
∴B1CO1=120°.
∵∠O1CO=60°,
∴∠B1CO=180°,
∴B1、C、O三点共线.
∵C(-
3
,3),
∴CO=CO1=O1O=2
3

∵MO=4
3

∴MO1=O1O=O1C,
可证得∠MCO=90°
∵BC=CO=2
3
,BC=B1C,
∴B1C=CO,
∴MB1=MO,
∴∠B1MC=
1
2
∠BMO=30°;

(3)解:如图3,设MC与AB边交于点D,过点C作CE∥AB交PQ于点E,过点Q作QN⊥OA于点N.
∵AD=1,PD=m,
∴AP=1-m.  
在△CEQ中,CE=m,∠ECQ=30°
∴CQ=
3
2
m,
∴OQ=2
3
-
3
2
m
∴QN=3-
3
4
m,ON=
3
-
3
4
m
∴AN=2
3
+
3
4
m
又∵S四边形OAPQ=S梯形PAQN+S△QNO
∴S=
1
2
+
1
2
3
-
3
4
m)(3-
3
4
m)
∴S=-
3
8
m2-2
3
m+
11
2
3
(0<m<1)
点评:本题考查了一次函数的综合题.此题涉及的知识点比较多:一次函数图象上点的坐标特征,等边三角形的判定与性质,等腰三角形的性质,梯形的面积公式以及三角形的面积公式等.解答(3)题时,注意“分割法”的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒.
(1)如果点Q的速度为每秒2个单位,
①试分别写出这时点Q在OC上或在CB上时的坐标(用含t的代数式表示,不要求写出t的取值范围);
②求t为何值时,PQ∥OC?
(2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,
①试用含t的代数式表示这时点Q所经过的路程和它的速度;
②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求精英家教网出相应的t的值和P、Q的坐标;如不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,点P沿OA以每秒1个单位向终点A运动,点Q沿OC、CB以每秒2个单位向终点B运动.当这两点中有一点到达自己的终点时,另一点也停止运动.
(1)设从出发起运动了x秒,且x>2.5时,Q点的坐标;
(2)当x等于多少时,四边形OPQC为平行四边形?
(3)四边形OPQC能否成为等腰梯形?说明理由;
(4)设四边形OPQC的面积为y,求出当x>2.5时y与x的函数关系式;并求出y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,梯形OABC中,CB∥OA,O为坐标原点,A(4,0),C(0,4),tan∠BAO=2,动点P从点C出发,以每秒1个单位的速度沿线段CB运动到点B后,再以每秒
5
个单位的速度沿线段BA运动,到点A停止,过点P作PQ⊥x轴于Q,以PQ为一边向左作正方形PQRS,设运动时间为t(秒),正方形PQRS与梯形ABCD重叠的面积为S(平方单位).
(1)求点B的坐标.
(2)求S与t的函数关系式.
(3)求(2)中的S的最大值.
(4)连接OB,OB中点为M,正方形PQRS在变化过程中,使点M在正方形PQRS的边上的t值为
1秒或3秒
1秒或3秒

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为
(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,点P沿OA以每秒1个单位向终点A运动,点Q沿OC、CB以每秒2个单位向终点B运动.当这两点中有一点到达自己的终点时,另一点也停止运动.
(1)设从出发起运动了x秒,当x等于多少时,四边形OPQC为平行四边形?
(2)四边形OPQC能否成为等腰梯形?说明理由.

查看答案和解析>>

同步练习册答案