精英家教网 > 初中数学 > 题目详情
28、如图,ABCD是正方形,点E在BC上,DF⊥AE于F,请你在AE上确定一点G,使△ABG≌△DAF,并说明理由.
分析:要使△ABG≌△DAF,我们可以先看已知的条件,ABCD是正方形,AD=AB,AD是直角三角形ADF上的斜边,要使两三角形全等,那么AB也应该是直角三角形的斜边,因此应该作BG⊥AE于G.这两个三角形中,已有的条件有AD=AB,一组直角边,再得出一组对应角相等即可得出全等的结论,我们可以看出∠ADF和∠BAE同为∠DAF的余角,因此∠ADF=∠BAE,这样就构成了两三角形全等的条件.因此两三角形就全等了.
解答:证明:作BG⊥AE于G,
∵四边形ABCD是正方形,DF⊥AE,
∴∠AFD=∠AGB=90°,
∵∠DAF+∠GAB=90°,∠DAF+∠ADF=90°,
∴∠ADF=∠GAB,又AD=AB,
∴△ADF≌△BAG.
点评:本题考查了正方形的性质和全等三角形的判定.本题中根据已知条件确定G点的位置是得出全等三角形的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=
114
时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程精英家教网x2-7x+12=0的两个根,且OA>OB.
(1)则点C的坐标是
 
,点D的坐标是
 

(2)若将此平行四边形ABCD沿x轴正方向向右平移3个单位,沿y轴正方向向上平移2个单位,则点C的坐标是
 
,点D的坐标是
 

(3)若将平行四边形ABCD平移到第一象限后,点B的坐标是(a,b),则点C的坐标是
 
,点D的坐标是
 

(4)若点M在平面直角坐标系内,则在上图的直线AB上,并且在第一、第二象限内是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•鞍山)如图:方格纸中的每个小方格都是边长为1个单位的小正方形,四边形ABCD和四边形A1B1C1D1的顶点均在格点上,以点O为坐标原点建立平面直角坐标系.
(1)画出四边形ABCD沿y轴正方向平移4格得到的四边形A2B2C2D2,并求出点D2的坐标.
(2)画出四边形A1B1C1D1绕点O逆时针方向旋转90°后得到的四边形A3B3C3D3,并求出A2、B3之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

课题学习:
(1)如图1,E、F、G、H分别是正方形ABCD各边的中点,则四边形EFGH是
正方
正方
形,正方形ABCD的面积记为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(2)如图2,E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是
形,菱形ABCD的面积为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(3)如图3,梯形ABCD中,AD∥BC,对角线AC⊥BD,垂足为O,E、F、G、H分别为各边的中点.四边形EFGH是
形;若梯形ABCD的面积记为S1,四边形EFGH的面积记为S2,由图可猜想S1和S2间的数量关系为:
S1=2S2
S1=2S2

(4)如图4,E、G分别是平行四边形ABCD的边AB、DC的中点,H、F分别是边形AD、BC上的点,且四边形EFGH为平行四边形,若把平行四边形ABCD的面积记为S1,把平行四边形形EFGH的面积记为S2,试猜想S1和S2间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),已知,矩形ABCD的边AD=3,对角线长为5,将矩形ABCD置于直角坐标系内,点C与原点O重合,且反比例函数的图象的一个分支位于第一象限.
①求图(1)中,点A的坐标是多少?
②若矩形ABCD从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数的图象上,如图(2),求反比例函数的表达式.
③矩形ABCD继续向x轴的正方向移动,AB、AD与反比例函数图象分别交于P、Q两点,如图(3),设移动总时间为t(1<t<5),分别写出△PBC的面积S1、△QDC的面积S2与t的函数关系式,并求当t为何值时,S2=
107
S1

查看答案和解析>>

同步练习册答案