精英家教网 > 初中数学 > 题目详情
抛物线y=(k2-2)x2-4kx+m的对称轴是直线x=2,且它的最低点在直线y=-2x+2上,求:
(1)函数解析式;
(2)若抛物线与x轴交点为A、B与y轴交点为C,求△ABC面积.
(1)∵抛物线y=(k2-2)x2-4kx+m的对称轴是直线x=2
4k
2(k2-2)
=2
解得k=-1或k=2
又∵图象有最低点,即开口向上
∴k2-2>0,即k2>2
∴k=2
即y=2x2-8x+m
把x=2代入直线y=-2x+2得
y=-2
即抛物线的顶点坐标是(2,-2)
代入函数y=2x2-8x+m得
m=6
∴函数解析式为y=2x2-8x+6;

(2)当x=0时,y=6,即点C的坐标是(0,6)
当y=0时,2x2-8x+6=0,解得x=1或x=3,
即点A、B的坐标分别是(1,0)、(3,0)
则AB=3-1=2,OC=6
∴S△ABC=
1
2
AB•OC=
1
2
×2×6=6.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
1
2
x2+bx+4上有不同的两点E(k+3,0)和F(-k-1,0).
(1)求抛物线的解析式.
(2)如图,抛物线y=-
1
2
x2+bx+4与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.
(3)当k>0且∠PMQ的边过点F时,求m、n的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线的顶点是(-1,-2),且过点(1,10).求此抛物线对应的二次函数关系式______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:正方形ABCO的边长为3,过A(0,3)点作直线AD交x轴于D点,且D点的坐标为(4,0),线段AD上有一动点,以每秒一个单位长度的速度移动.
(1)求直线AD的解析式;
(2)若动点从A点开始沿AD方向运动2.5秒时到达的位置为点P,求经过B、O、P三点的抛物线的解析式;
(3)若动点从A点开始沿AD方向运动到达的位置为点P1,过P1作P1E⊥x轴,垂足为E,设四边形BCEP1的面积为S,请问S是否有最大值?若有,请求出P点坐标和S的最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

欢欢家想利用房屋侧面的一面墙,再砌三面墙,围成一个矩形猪圈(如图),一面墙的中间留出1米宽的进出门(门使用另外的材料).现备有足够砌11米长的围墙的材料,设猪圈与已有墙面垂直的墙的长度为x米,猪圈面积为y平方米.
(1)写出y与x之间的函数关系式.
(2)要使猪圈面积为16平方米,如何设计三面围墙的长度.
(3)能否使猪圈面积为20平方米?说明理由.
(4)你能求出猪圈面积的最大值吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,正方形ABOD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OE的解析式为y=2x,直线CF过x轴上的一点C(-
3
5
a
,0)且与OE平行,现正方形以每秒
a
10
的速度匀速沿x轴正方向平行移动,设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.
(1)当0≤t<4时,写出S与t的函数关系式;
(2)当4≤t≤5时,写出S与t的函数关系式,在这个范围内S有无最大值?若有,请求出最大值,若没有请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某校数学研究性学习小组准备设计一种高为60cm的简易废纸箱.如图甲,废纸箱的一面利用墙,放置在地面上,利用地面作底,其它的面用一张边长为60cm的正方形硬纸板围成.经研究发现:由于废纸箱的高是确定的,所以废纸箱的横截面图形面积越大,则它的容积越大.该小组通过多次尝试,最终选定乙图中的简便且易操作的三种横截面图形.在三个图的比较中,图______横截面图形的面积最大(填序号①②③),则围成最大的体积是______cm3.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某汽车制造公司计划生产A、B、C三种型号的汽车共80辆.并且公司在设计上要求,A、C两种型号之间按如图所示的函数关系生产.该公司投入资金不少于1212万元,但不超过1224万元,且所有资金全部用于生产这三种型号的汽车,三种型号的汽车生产成本和售价如下表:
ABC
成本(万元/辆)121518
售价(万元/辆)141822
设A种型号的汽车生产x辆;
(1)设C种型号的汽车生产y辆,求出y与x的函数关系式;
(2)该公司对这三种型号汽车有哪几种生产方案?
(3)设该公司卖车获得的利润W万元,求公司如何生产获得利润最大?
(4)根据市场调查,每辆A、B型号汽车的售价不会改变,每辆C型号汽车在不亏本的情况下售价将会降价a万元(a>0),且所生产的三种型号汽车可全部售出,该公司又将如何生产获得利润最大?(注:利润=售价-成本)

查看答案和解析>>

同步练习册答案