精英家教网 > 初中数学 > 题目详情
某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y与x的函数关系式;
(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?
(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算从计算结果看,你有何感想?(不超过30字)
(1)设y=kx+b,
∵x=4时,y=400;x=5时,y=320.
400=4k+b
320=5k+b

解之,得
k=-80
b=720

∴y与x的函数关系式为y=-80x+720.(3分)

(2)该班学生买饮料每年总费用为50×120=6000(元),
当y=380时,380=-80x+720,得x=4.25.
该班学生集体饮用桶装纯净水的每年总费用为380×4.25+780=2395(元).
显然,从经济上看饮用桶装纯净水花钱少.(5分)

(3)设该班每年购买纯净水的费用为W元,则
W=xy=x(-80x+720)=-80(x-
9
2
2+1620,
∴当x=
9
2
时,W最大值=1620,(7分)
要使饮用桶装纯净水对学生一定合算,
则50a≥W最大值+780,
即50a≥1620+780,
解之,得a≥48元.
所以a至少为48元时班级饮用桶装纯净水对学生一定合算,(8分)
由此看出,饮用桶装纯净水不仅能省钱,而且能养成勤俭节约的好习惯.(9分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,已知点A(
3
,0),B(-
3
,0),以点A为圆心,AB为半径的圆与x轴相交于点B,C,与y轴相交于点D,E.
(1)若抛物线y=
1
3
x2+bx+c经过C,D两点,求抛物线的解析式,并判断点B是否在该抛物线上;
(2)在(1)中的抛物线的对称轴上求一点P,使得△PBD的周长最小;
(3)设Q为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数99象过点A(5,-1),B(1,1),C(-1,2),求此二次函数9解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,对称轴为直线x=-
7
2
的抛物线经过点A(-6,0)和点B(0,4).
(1)求抛物线的解析式和顶点坐标;
(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求?OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;
①当?OEAF的面积为24时,请判断?OEAF是否为菱形?
②是否存在点E,使?OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.•

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,
(1)求出m的值;
(2)求抛物线与x轴的交点坐标;
(3)直接写出x取何值时,抛物线位于x轴上方.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=-
1
2
x2+bx+c
的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x轴的另一个交点;
(3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=-
1
2
x2+bx+c
经过A(-2,0),C(4,0)两点,和y轴相交于点B,连接AB、BC.
(1)求抛物线的解析式(关系式).
(2)在第一象限外,是否存在点E,使得以BC为直角边的△BCE和Rt△AOB相似?若存在,请简要说明如何找到符合条件的点E,然后直接写出点E的坐标,并判断是否有满足条件的点E在抛物线上;若不存在,请说明理由.
(3)在直线BC上方的抛物线上,找一点D,使S△BCD:S△ABC=1:4,并求出此时点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,并与y轴交于点M,与x轴交于点A和B.
(1)求出y=mx2+nx+p的解析式,试猜想出一般形式y=ax2+bx+c关于y轴对称的二次函数解析式(不要求证明);
(2)若AB中点是C,求sin∠CMB;
(3)如果一次函数y=kx+b过点M,且于y=mx2+nx+p相交于另一点N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知OB=2,点A和点B关于N(0,-2)成中心对称,抛物线y=ax2+bx+c经过点A、O、B三点.
(1)求抛物线的函数表达式;
(2)若点P是x轴上的一动点,从点O出发沿射线OB方向运动,圆P半径为
3
2
4
,速度为每秒1个单位,试求几秒后圆P与直线AB相切;
(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案