精英家教网 > 初中数学 > 题目详情

已知△ABC与△DEF相似且面积的比为4:9,则△ABC与△DEF的周长比为_____________.

2:3

解析考点:相似三角形的性质。
分析:由△ABC与△DEF相似且面积的比为4:9,根据相似三角形的面积比等于相似比的平方,可求得△ABC与△DEF的相似比,又由相似三角形的周长的比等于相似比,即可求得答案。
解答:
∵△ABC与△DEF相似且面积的比为4:9,
∴△ABC与△DEF的相似比为:2:3,
∴△ABC与△DEF周长的比为:2:3。
故答案为:2:3。
点评:此题考查了相似三角形的性质.此题比较简单,注意熟记性质定理是解此题的关键。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

3、已知△ABC与△DEF全等,△ABC的周长为16cm,DE=5cm,EF=6cm,则AC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB相交于点F.
(1)求证:△BCD∽△DAF;
(2)若BC=1,设CD=x,AF=y;
①求y关于x的函数解析式及定义域;
②当x为何值时,
S△BEF
S△BCD
=
7
9

查看答案和解析>>

科目:初中数学 来源:2012年浙教版初中数学七年级下 1.4全等三角形练习卷(解析版) 题型:选择题

已知△ABC与△DEF全等,∠B与∠F,∠C与∠E是对应角,那么①BC=EF;②∠C的平分线与∠E的平分线相等;③AC边上的高与DE边上的高相等;④AB边上的中线与DE边上的中线相等.其中正确的结论有(  )

A.1个    B.2个     C.3个    D.4个

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB相交于点F.
(1)求证:△BCD∽△DAF;
(2)若BC=1,设CD=x,AF=y;
①求y关于x的函数解析式及定义域;
②当x为何值时,数学公式

查看答案和解析>>

科目:初中数学 来源:2012年安徽省安庆市桐城市孔城初中中考数学二模试卷(解析版) 题型:解答题

如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB相交于点F.
(1)求证:△BCD∽△DAF;
(2)若BC=1,设CD=x,AF=y;
①求y关于x的函数解析式及定义域;
②当x为何值时,

查看答案和解析>>

同步练习册答案