13£®Í¼1¡¢Í¼2Ϊͬһ³¤·½Ìå·¿¼äµÄʾÒâͼ£¬Í¼3Ϊ¸Ã³¤·½ÌåµÄ±íÃæÕ¹¿ªÍ¼£®
£¨1£©Ö©ÖëÔÚ¶¥µãA¡ä´¦£®
¢Ù²ÔÓ¬ÔÚ¶¥µãB´¦Ê±£¬ÊÔÔÚͼ1Öл­³öÖ©ÖëΪ׽ס²ÔÓ¬£¬ÑØǽÃæÅÀÐеÄ×î½ü·Ïߣ®
¢Ú²ÔÓ¬ÔÚ¶¥µãC´¦Ê±£¬Í¼2Öл­³öÁËÖ©Öë׽ס²ÔÓ¬µÄÁ½Ìõ·Ïߣ¬ÍùÌ컨°åABCDÅÀÐеÄ×î½ü·ÏßA¡äGCºÍÍùǽÃæBB¡äC¡äCÅÀÐеÄ×î½ü·ÏßA¡äHC£¬ÊÔͨ¹ý¼ÆËãÅжÏÄÄÌõ·Ï߸ü½ü£®
£¨2£©ÔÚͼ3ÖУ¬°ë¾¶Îª10dmµÄ¡ÑMÓëD¡äC¡äÏàÇУ¬Ô²ÐÄMµ½±ßCC¡äµÄ¾àÀëΪ15dm£¬Ö©ÖëPÔÚÏ߶ÎABÉÏ£¬²ÔÓ¬QÔÚ¡ÑMµÄÔ²ÖÜÉÏ£¬Ï߶ÎPQΪ֩ÖëÅÀÐзÏߣ¬ÈôPQÓë¡ÑMÏàÇУ¬ÊÔÇóPQ³¤¶ÈµÄ·¶Î§£®

·ÖÎö £¨1£©¢Ù¸ù¾Ý¡°Á½µãÖ®¼ä£¬Ï߶Î×î¶Ì¡±¿ÉÖª£ºÏ߶ÎA¡äBΪ×î½ü·Ïߣ»
¢Ú¢ñ£®½«³¤·½ÌåÕ¹¿ª£¬Ê¹µÃ³¤·½ÐÎABB¡äA¡äºÍ³¤·½ÐÎABCDÔÚͬһƽÃæÄÚ£¬Èçͼ2¢Ù£¬ÔËÓù´¹É¶¨ÀíÇó³öAC³¤£»¢ò£®½«³¤·½ÌåÕ¹¿ª£¬Ê¹µÃ³¤·½ÐÎABB¡äA¡äºÍ³¤·½ÐÎBCC¡äB¡äÔÚͬһƽÃæÄÚ£¬Èçͼ2¢Ú£¬ÔËÓù´¹É¶¨ÀíÇó³öA¡äC³¤£¬È»ºó½«Á½¸ö³¤¶È½øÐбȽϣ¬¾Í¿É½â¾öÎÊÌ⣻
£¨2£©¹ýµãM×÷MH¡ÍABÓÚH£¬Á¬½ÓMQ¡¢MP¡¢MA¡¢MB£¬Èçͼ3£®ÓÉ¡ÑMÓëPQÏàÇÐÓÚµãQ¿ÉµÃMQ¡ÍPQ£¬¼´¡ÏMQP=90¡ã£¬¸ù¾Ý¹´¹É¶¨Àí¿ÉµÃPQ=$\sqrt{M{P}^{2}-M{Q}^{2}}$=$\sqrt{M{P}^{2}-100}$£®ÒªÇóPQµÄÈ¡Öµ·¶Î§£¬Ö»ÐèÏÈÇó³öMPµÄÈ¡Öµ·¶Î§£¬¾Í¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©¢Ù¸ù¾Ý¡°Á½µãÖ®¼ä£¬Ï߶Î×î¶Ì¡±¿ÉÖª£º
Ï߶ÎA¡äBΪ×î½ü·Ïߣ¬Èçͼ1Ëùʾ£®

¢Ú¢ñ£®½«³¤·½ÌåÕ¹¿ª£¬Ê¹µÃ³¤·½ÐÎABB¡äA¡äºÍ³¤·½ÐÎABCDÔÚͬһƽÃæÄÚ£¬Èçͼ2¢Ù£®

ÔÚRt¡÷A¡äB¡äCÖУ¬
¡ÏB¡ä=90¡ã£¬A¡äB¡ä=40£¬B¡äC=60£¬
¡àAC=$\sqrt{4{0}^{2}+6{0}^{2}}$=$\sqrt{5200}$=20$\sqrt{13}$£®
¢ò£®½«³¤·½ÌåÕ¹¿ª£¬Ê¹µÃ³¤·½ÐÎABB¡äA¡äºÍ³¤·½ÐÎBCC¡äB¡äÔÚͬһƽÃæÄÚ£¬Èçͼ2¢Ú£®

ÔÚRt¡÷A¡äC¡äCÖУ¬
¡ÏC¡ä=90¡ã£¬A¡äC¡ä=70£¬C¡äC=30£¬
¡àA¡äC=$\sqrt{7{0}^{2}+3{0}^{2}}$=$\sqrt{5800}$=10$\sqrt{58}$£®
¡ß$\sqrt{5200}$£¼$\sqrt{5800}$£¬
¡àÍùÌ컨°åABCDÅÀÐеÄ×î½ü·ÏßA¡äGC¸ü½ü£»

£¨2£©¹ýµãM×÷MH¡ÍABÓÚH£¬Á¬½ÓMQ¡¢MP¡¢MA¡¢MB£¬Èçͼ3£®

¡ß°ë¾¶Îª10dmµÄ¡ÑMÓëD¡äC¡äÏàÇУ¬Ô²ÐÄMµ½±ßCC¡äµÄ¾àÀëΪ15dm£¬BC¡ä=60dm£¬
¡àMH=60-10=50£¬HB=15£¬AH=40-15=25£¬
¸ù¾Ý¹´¹É¶¨Àí¿ÉµÃAM=$\sqrt{A{H}^{2}+M{H}^{2}}$=$\sqrt{2{5}^{2}+5{0}^{2}}$=$\sqrt{3125}$£¬
MB=$\sqrt{B{H}^{2}+M{H}^{2}}$=$\sqrt{1{5}^{2}+5{0}^{2}}$=$\sqrt{2725}$£¬
¡à50¡ÜMP¡Ü$\sqrt{3125}$£®
¡ß¡ÑMÓëPQÏàÇÐÓÚµãQ£¬
¡àMQ¡ÍPQ£¬¡ÏMQP=90¡ã£¬
¡àPQ=$\sqrt{M{P}^{2}-M{Q}^{2}}$=$\sqrt{M{P}^{2}-100}$£®
µ±MP=50ʱ£¬PQ=$\sqrt{2400}$=20$\sqrt{6}$£»
µ±MP=$\sqrt{3125}$ʱ£¬PQ=$\sqrt{3025}$=55£®
¡àPQ³¤¶ÈµÄ·¶Î§ÊÇ20$\sqrt{6}$dm¡ÜPQ¡Ü55dm£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÁ½µãÖ®¼äÏ߶Î×î¶Ì¡¢µãµ½Ö±ÏßÖ®¼ä´¹Ï߶Î×î¶Ì¡¢ÇÐÏßµÄÐÔÖÊ¡¢³¤·½ÌåµÄÕ¹¿ªÍ¼¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬°Ñ¿Õ¼äͼÐεÄ×î¶Ì¾àÀëÎÊÌâת»¯Îªµ½Í¬Ò»Æ½ÃæÄÚ×î¶Ì¾àÀëÎÊÌâÊǽâ¾ö£¨1£©¢ÚСÌâµÄ¹Ø¼ü£¬¸ù¾ÝPQ=$\sqrt{M{P}^{2}-M{Q}^{2}}$°ÑÇóPQµÄÈ¡Öµ·¶Î§×ª»¯ÎªÇóMPµÄÈ¡Öµ·¶Î§Êǽâ¾öµÚ£¨2£©Ð¡ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®°ÑÏÂÁи÷ʽÒòʽ·Ö½â
£¨1£©2x2-8y2£»
£¨2£©2x3y-4x2y2+2xy3£»
£¨3£©x2£¨m-n£©+y2£¨n-m£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ò»¶ÓѧÉúÈ¥´ºÓΣ¬Ô¤¼Æ¹²Ðè·ÑÓÃ120Ôª£¬ºóÀ´ÓÖÓÐ2È˲μӽøÀ´£¬×Ü·ÑÓò»±ä£¬ÓÚÊÇÿÈË¿ÉÉÙ·Ö̯3Ôª£¬ÇóÕâ×éѧÉúÔ­À´µÄÈËÊý£®ÉèÕâ¶ÓѧÉúÔ­À´µÄÈËÊýΪX£¬ÔòÒÀÌâÒâ¿ÉÁе÷½³ÌΪ£¨¡¡¡¡£©
A£®$\frac{120}{x+2}$+3=$\frac{120}{x}$B£®$\frac{120}{x}$=$\frac{120}{x+2}$-3C£®$\frac{120}{x-2}$=$\frac{120}{x}$+3D£®$\frac{120}{x-2}$=$\frac{120}{x}$-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆËã
£¨1£©$\frac{\sqrt{27}+\sqrt{12}}{\sqrt{3}}$         
£¨2£©$\sqrt{48}$$+\sqrt{3}$-$\sqrt{\frac{1}{2}}$¡Á$\sqrt{12}$$+\sqrt{24}$
£¨3£©£¨$\sqrt{3}$-2£©£¨$\sqrt{3}$+2£©
£¨4£©£¨$\sqrt{3}$-3£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®³ß¹æ×÷ͼ£ºÒÑÖª£º¡ÏABC£¬ÒÔBAΪһ±ß£¬ÔÚ¡ÏABCµÄÍⲿ£¬×÷¡ÏABD£¬Ê¹¡ÏABD=2¡ÏABC£®£¨ÒªÇó£ºÒª±£Áô×÷ͼºÛ¼££©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ1£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬¡ÏBAC=60¡ã£¬µãEÊÇ¡ÏBAC½Çƽ·ÖÏßÉÏÒ»µã£¬¹ýµãE×÷AEµÄ´¹Ïߣ¬¹ýµãA×÷ABµÄ´¹Ïߣ¬Á½´¹Ïß½»ÓÚµãD£¬Á¬½ÓDB£¬µãFÊÇBDµÄÖе㣬DH¡ÍAC£¬´¹×ãΪH£¬Á¬½ÓEF£¬HF£®
£¨1£©Èçͼ1£¬ÈôµãHÊÇACµÄÖе㣬AC=2$\sqrt{3}$£¬ÇóAB£¬BDµÄ³¤£»
£¨2£©Èçͼ1£¬ÇóÖ¤£ºHF=EF£»
£¨3£©Èçͼ2£¬Á¬½ÓCF£¬CE£®²ÂÏ룺¡÷CEFÊÇ·ñÊǵȱßÈý½ÇÐΣ¿ÈôÊÇ£¬ÇëÖ¤Ã÷£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔĶÁ×ÊÁÏ£º
Èçͼ1£¬ÔÚƽÃæÖ®¼ä×ø±êϵxOyÖУ¬A£¬BÁ½µãµÄ×ø±ê·Ö±ðΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Óɹ´¹É¶¨ÀíµÃAB2=|x2-x1|2+|y2-y1|2£¬ËùÒÔA£¬BÁ½µã¼äµÄ¾àÀëΪAB=$\sqrt{£¨{x}_{2}-{x}_{1}£©^{2}+£¨{y}_{2}-{y}_{1}£©^{2}}$£®
ÎÒÃÇÖªµÀ£¬Ô²¿ÉÒÔ¿´³Éµ½Ô²ÐľàÀëµÈÓڰ뾶µÄµãµÄ¼¯ºÏ£¬Èçͼ2£¬ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬A£¨x£¬y£©ÎªÔ²ÉÏÈÎÒâÒ»µã£¬ÔòAµ½Ô­µãµÄ¾àÀëµÄƽ·½ÎªOA2=|x-0|2+|y-0|2£¬µ±¡ÑOµÄ°ë¾¶Îªrʱ£¬¡ÑOµÄ·½³Ì¿ÉдΪ£ºx2+y2=r2£®
ÎÊÌâÍØÕ¹£ºÈç¹ûÔ²ÐÄ×ø±êΪP£¨a£¬b£©£¬°ë¾¶Îªr£¬ÄÇô¡ÑPµÄ·½³Ì¿ÉÒÔдΪ£¨x-a£©2+£¨y-b£©2=r2£®
×ÛºÏÓ¦Óãº
Èçͼ3£¬¡ÑPÓëxÖáÏàÇÐÓÚÔ­µãO£¬Pµã×ø±êΪ£¨0£¬6£©£¬AÊÇ¡ÑPÉÏÒ»µã£¬Á¬½ÓOA£¬Ê¹tan¡ÏPOA=$\frac{3}{4}$£¬×÷PD¡ÍOA£¬´¹×ãΪD£¬ÑÓ³¤PD½»xÖáÓÚµãB£¬Á¬½ÓAB£®
¢ÙÖ¤Ã÷ABÊÇ¡ÑPµÄÇÐÏߣ»
¢ÚÊÇ·ñ´æÔÚµ½ËĵãO£¬P£¬A£¬B¾àÀ붼ÏàµÈµÄµãQ£¿Èô´æÔÚ£¬ÇóQµã×ø±ê£¬²¢Ð´³öÒÔQΪԲÐÄ£¬ÒÔOQΪ°ë¾¶µÄ¡ÑQµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑ֪ʵÊýa£¬bÂú×㣺a2+1=$\frac{1}{a}$£¬b2+1=$\frac{1}{b}$£¬Ôò2015|a-b|=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÁâÐÎABCDµÄ¶¥µãCÓëÔ­µãOÖغϣ¬µãBÔÚyÖáµÄÕý°ëÖáÉÏ£¬µãAÔÚ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏ£¬µãDµÄ×ø±êΪ£¨4£¬3£©£®
£¨1£©ÇókµÄÖµ£»
£¨2£©Èô½«ÁâÐÎABCDÑØxÖáÕý·½ÏòƽÒÆ£¬µ±ÁâÐεĶ¥µãDÂäÔÚº¯Êýy=$\frac{k}{x}$£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏʱ£¬ÇóÁâÐÎABCDÑØxÖáÕý·½ÏòƽÒƵľàÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸