精英家教网 > 初中数学 > 题目详情
如图,一位运动员在距篮下4.5米处跳起投篮,篮球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最高度3.5米,篮筐中心到地面距离为3.05米,建立坐标系如图.该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,他跳离地面的高度为0.2米,问这次投篮是否命中,为什么?若不命中,他应向前(或向后)移动几米才能使球准确命中?
分析:根据顶点坐标设出顶点式,代入求出手时的坐标,可得出抛物线解析式,令x=2,得出y的值与3.05米比较即可作出判断,要使球进,篮筐需要满足在抛物线上,设移动后的抛物线为y=-
1
5
(x+h)2+3.5
,将篮筐的坐标代入可确定h的值.
解答:解:∵篮球运行的路线是抛物线,依题意该抛物线最高点坐标为(0,3.5)
∴设该篮球运行的路线对应的函数解析式为y=ax2+3.5,
依题意该抛物线经过(-2.5,2.25),
代入抛物线可得:6.25a+3.5=2.25,
解得:a=-
1
5

则该抛物线解析式为y=-
1
5
x2+3.5

当x=2时,y=-
1
5
×4+3.5=2.7≠3.05

故该运动员这次跳投不能命中.
y=-
1
5
(x+h)2+3.5

当x=2,y=3.05时,-
1
5
(2+h)2
+3.5=3.05,
解得h1=-0.5,h2=-3.5,
∵|h2|=3.5>2,不合题意,舍去,
∴h=-0.5,即y=-
1
5
(x-0.5)2+3.5

∴应向前移动0.5米才能投中.
点评:本题考查了二次函数的应用,设出抛物线解析式,根据球出手时的坐标确定抛物线解析式是解答本题的关键,有一定难度,注意数学模型的建立.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.建立如图所示的直角坐标系,则抛物线的表达式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.
(1)建立如图所示的直角坐标系,求抛物线的表达式;
(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一位运动员在距篮下4.5米处跳起投篮,篮球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最高度3.5米,篮筐中心到地面距离为3.05米,建立坐标系如图.该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,他跳离地面的高度为0.2米,问这次投篮是否命中,为什么?若不命中,他应向前(或向后)移动几米才能使球准确命中?

查看答案和解析>>

科目:初中数学 来源:2011-2012年北京育才学校九年级第一学期期中考试数学卷 题型:解答题

. 如图,一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05m.

1.1)建立如图所示的直角坐标系,求抛物线的函数关系式;

2.(2)该运动员身高1.8m,在这次跳投中,球在头顶上方

0.25m处出手,问:球出手时,他跳离地面的高度是多少?

 

查看答案和解析>>

同步练习册答案