精英家教网 > 初中数学 > 题目详情

【题目】如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到AME.当AB=1时,AME的面积记为S1;当AB=2时,AME的面积记为S2;当AB=3时,AME的面积记为

S3;则S3﹣S2=

【答案】

【解析】

试题分析:根据连接BE,则BEAM,利用AME的面积=AMB的面积即可得出Sn=n2,Sn﹣1=(n﹣1)2=n2﹣n+,再代值计算即可得出答案.

解:连接BE.

在线段AC同侧作正方形ABMN及正方形BCEF,

BEAM,

∴△AME与AMB同底等高,

∴△AME的面积=AMB的面积,

当AB=n时,AME的面积记为Sn=n2

Sn﹣1=(n﹣1)2=n2﹣n+

当n2时,Sn﹣Sn﹣1===

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点Cx轴下方,且使OCA∽△OBC.

(1)求线段OC的长度;

(2)设直线BCy轴交于点M,点CBM的中点时,求直线BM和抛物线的解析式;

(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】□ABCD对角线交点O作直线m,分别交直线AB于点E,交直线CD于点F,若AB=4,AE=6,则DF的长是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】写字是学生的一项基本功,为了了解某校学生的书写情况,随机对该校部分学生进行测试,测试结果分为A,B,C,D四个等级.根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息,回答以下问题:

(1)把条形统计图补充完整;

(2)若该校共有2000名学生,估计该校书写等级为“D的学生约有 人;

(3)随机抽取了4名等级为“A的学生,其中有3名女生,1名男生,现从这4名学生中任意抽取2名,用列表或画树状图的方法,求抽到的两名学生都是女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,ABy轴,且点B的纵坐标为1,双曲线y经过点B

(1)a的值及双曲线y的解析式;

(2)经过点B的直线与双曲线y的另一个交点为点C,且△ABC的面积为

①求直线BC的解析式;

②过点BBDx轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB的直径,点C外一点,连接ACBCAC交于点D,弦DE与直径AB交于点F

求证:BC的切线;

,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x22x3经过x轴上的AB两点,与y轴交于点C,线段BC与抛物线的对称轴相交于点D,点Ey轴上的一个动点.

1)求直线BC的函数解析式,并求出点D的坐标;

2)设点E的纵坐标为为m,在点E的运动过程中,当BDE中为钝角三角形时,求m的取值范围;

3)如图2,连结DE,将射线DE绕点D顺时针方向旋转90°,与抛物线交点为G,连结EGDG得到RtGED.在点E的运动过程中,是否存在这样的RtGED,使得两直角边之比为21?如果存在,求出此时点G的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一元二次方程中,有著名的韦达定理:对于一元二次方程,如果方程有两个实数根,那么(说明:定理成立的条件)。比如方程中,,所以该方程有两个不等的实数根,记方程的两根为,那么+= =,请根据阅读材料解答下列各题:

1)已知方程的两根为,且 >,求下列各式的值:

2)已知是一元二次方程的两个实数根.

①是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由.

②求使的值为整数的实数的整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小山坡上有一根垂直于地面的电线杆,小明从地面上的A处测得电线杆顶端点的仰角是45°,后他正对电线杆向前走6米到达B处,测得电线杆顶端点和电线杆底端D点的仰角分别是60°30°.求电线杆的高度(结果保留根号)

查看答案和解析>>

同步练习册答案