精英家教网 > 初中数学 > 题目详情
如图1,已知直线y=
2
5
x+2与x轴交于点A,交y轴于C、抛物线y=ax2+4ax+b经过A、C两点,抛物线交x轴于另一点B.
(1)求抛物线的解析式;
(2)点Q在抛物线上,且有△AQC和△BQC面积相等,求点Q的坐标;
(3)如图2,点P为△AOC外接圆上
ACO
的中点,直线PC交x轴于D,∠EDF=∠ACO.当∠EDF绕D旋转时,DE交AC于M,DF交y轴负半轴于N、问CN-CM的值是否发生变化?若不变,求出其值;若变化,求出变化范围.
(1)由直线AC的解析式可得:A(-5,0),C(0,2);
代入抛物线的解析式中可得:
25a-20a+b=0
b=2

解得
a=-
2
5
b=2

故抛物线的解析式为:y=-
2
5
x2-
8
5
x+2.

(2)易知B(1,0);
①当Q在AC段的抛物线上时,
△ACQ和△BCQ同底,若它们的面积相等,则A、B到直线CQ得距离相等,即CQAB;
由于抛物线的对称轴为x=-2,
故Q(-4,2);
②当Q在线段AC外的直线上时,
△ACQ的面积为:
1
2
AL•|yC-yQ|,
△BCQ的面积为:
1
2
BL•|yC-yQ|,
若两个三角形的面积相等,
那么AL=BL,
即L是线段AB的中点,即L(-2,0);
易知直线CL的解析式为:y=x+2,联立抛物线的解析式得:
y=-
2
5
x2-
8
5
x+2
y=x+2

解得
x=0
y=2
x=-
13
2
y=-
9
2

故Q(-
13
2
,-
9
2
);
综上所述,存在两个符合条件的点Q,且坐标为:Q(-4,2)或(-
13
2
,-
9
2
).

(3)如图,设△AOC的外接圆圆心为S;
作∠NDR=∠PDE,交y轴于R;
则∠PDR=∠MDN=∠ACO;
由于P点是
ACO
的中点,由垂径定理知SP必平行于y轴,得:
∠PSC=∠ACO=∠CDR,∠SPC=∠RCD;
则△SCP△DCR,
所以△CDR也是等腰三角形;
即CD=DR,OC=OR;
∵∠PCS=∠DRC,
∴∠DCM=∠DRN,
又∵∠CDM=∠NDR,CD=DR,
∴△DCM≌△DRN,
得CM=RN,
故CN-CM=CR=2OC;
所以CN-CM的值不变,恒为2OC,即4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

矩形OABC的顶点A(-8,0)、C(0,6),点D是BC边上的中点,抛物线y=ax2+bx经过A、D两点,
(1)求点D关于y轴的对称点D′的坐标及a、b的值;
(2)在y轴上取一点P,使PA+PD长度最短,求点P的坐标;
(3)将抛物线y=ax2+bx向下平移,记平移后点A的对应点为A1,点D的对应点为D1.当抛物线平移到某个位置时,恰好使得点O是y轴上到A1、D1两点距离之和OA1+OD1最短的一点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c与y轴的交点为C,顶点为M,直线CM的解析式y=-x+2并且线段CM的长为2
2

(1)求抛物线的解析式.
(2)设抛物线与x轴有两个交点A(x1,0)、B(x2,0),且点A在B的左侧,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知⊙P的圆心坐标为(1.5,0),半径为2.5,⊙P与x轴交于A、B两点(点A在点B的左侧),与y轴的负半轴交于点D.
(1)求D点的坐标;
(2)求过A、B、D三点的抛物线的解析式;
(3)设平行于x轴的直线交此抛物线于E、F两点,问:是否存在以线段EF为直径的圆O'恰好与⊙P相外切?若存在,求出其半径r及圆心O'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.
(1)求a的值和该抛物线顶点P的坐标.
(2)求△PAB的面积;
(3)若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0)(A在B的左边),且x1+x2=4.
(1)求b的值及c的取值范围;
(2)如果AB=2,求抛物线的解析式;
(3)设此抛物线与y轴的交点为C,顶点为D,对称轴与x轴的交点为E,问是否存在这样的抛物线,使△AOC≌BED全等,如果存在,求出抛物线的解析式;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是(  )
A.第8秒B.第10秒C.第12秒D.第15秒

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知直线y=-
1
2
x
与抛物线y=-
1
4
x2+6
交于A、B两点,取与线段AB等长的一根橡皮筋,端点分别固定在A、B两处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A、B构成无数个三角形,这些三角形中存在一个面积最大的三角形,最大面积为(  )
A.12
6
B.
125
2
C.
125
4
D.
23
4

查看答案和解析>>

同步练习册答案