精英家教网 > 初中数学 > 题目详情

【题目】王老师自驾轿车沿高速公路从A地到B地旅游,途经两座跨海大桥,共用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到A地.

(1)求A、B两地间的路程.

(2)两座跨海大桥的长度及过桥费见表.

该省交通部门规定:轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括跨海大桥长),b(元)为跨海大桥过桥费.若王老师从A地到B地所花的高速公路通行费为295.4元,求轿车的高速公路里程费a.

【答案】(1)360千米(2)0.4元/千米

【解析】

试题分析:(1)根据往返的时间、速度和路程可得到一个一元一次方程,解此方程可得A与B两地间的高速公路路程;

(2)根据表格和王老师从A到B所花的高速公路通行费可以将解析式y=ax+b+5转换成一个含有未知数a的一元一次方程,解此方程可得轿车的高速公路里程费.

解:(1)设A与B两地间的高速公路路程为s千米,由题意得,

=10.

4.5s﹣4s=180,

0.5s=180,

解得s=360,

所以A与B两地间的高速公路路程为:360千米;

(2)轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,

根据表格和王老师的通行费可知,

y=295.4,x=360﹣48﹣36=276,b=100+80=180,将它们代入y=ax+b+5中得,

295.4=276a+180+5,

解得a=0.4,

所以轿车的高速公路里程费为:0.4元/千米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ABN△ACM位置如图所示,AB=ACAD=AE∠1=∠2

1)求证:BD=CE

2)求证:∠M=∠N

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A13)、点Bm1是一次函数的图像上的两点,一次函数图像与x轴交于点D.

1b = m =

2)过点B作直线l垂直于x轴,点E是点D关于直线l的对称点,点C是点A关于原点的对称点.试判断点BEC是否在同一条直线上,并说明理由.

3)连结AOBOAOB的面积;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜。

(1)当X=3时,谁获胜的可能性大?

(2)当x为何值时,游戏对双方是公平的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,PQ分别是BCAC上的点,作PR⊥ABPS⊥AC,垂足分别是RS,若AQ=PQPR=PS,下面四个结论:①AS=AR②QP∥AR③△BRP≌△QSP④AP垂直平分RS.其中正确结论的序号是 (请将所有正确结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(3,2)、(﹣1,0),若将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的口袋中有3个分别标有数字﹣1、1、2的小球,它们除标的数字不同外无其他区别.
(1)随机地从口袋中取出一小球,求取出的小球上标的数字为负数的概率;
(2)随机地从口袋中取出一小球,放回后再取出第二个小球,求两次取出的数字的和等于0的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。

(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则
①∠BEC=°;②线段AD、BE之间的数量关系是
(2)拓展研究:
如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.
(3)探究发现:
如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC是等边三角形,在直线AC、直线BC上分别取点D和点且AD=CE,直线BD、AE相交于点F.

(1)如图1所示,当点D、点E分别在线段CA、BC上时,求证:BD=AE;

(2)如图2所示,当点D、点E分别在CA、BC的延长线时,求∠BFE的度数;

(3)如图3所示,在(2)的条件下,过点CCMBD,交EF于点M,若DF:AF:AM=1:2:4,BC=12,求CE的长度.

查看答案和解析>>

同步练习册答案