精英家教网 > 初中数学 > 题目详情

如图,直线同侧有两点A、B,在直线上求一点C,使它到A、B之和最小.


解:作A关于直线MN的对称点E,连接BE交直线MN于C,连接AC,BC,
则此时C点符合要求.
分析:根据两点之间线段最短,作A关于直线MN的对称点E,连接BE交直线MN于C,即可得出答案.
点评:本题考查了轴对称-最短路线问题,主要考查学生的理解能力和动手操作能力,题目比较典型,是一道比较好的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•通州区一模)小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA+PB的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:
①作点A关于直线l的对称点A′.
②连接A′B,交直线l于点P.则点P为所求.请你参考小明的作法解决下列问题:
(1)如图1,在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使得△PDE的周长最小.
①在图1中作出点P.(三角板、刻度尺作图,保留作图痕迹,不写作法)
②请直接写出△PDE周长的最小值
8
8

(2)如图2在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,当四边形CGEF的周长最小时,请你在图2中确定点E、F的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF周长的最小值
6+3
10
6+3
10

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线同侧有两点A、B,在直线上求一点C,使它到A、B之和最小.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市通州区九年级中考一模数学卷(解析版) 题型:解答题

小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA+PB的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:

①作点A关于直线l的对称点A′.

②连结A′B,交直线l于点P.

则点P为所求.

请你参考小明的作法解决下列问题:

(1)如图,在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使得△PDE的周长最小.

 

①在图1中作出点P.(三角板、刻度尺作图,保留作图

痕迹,不写作法)                  

②请直接写出△PDE周长的最小值         .

(2)如图在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,当四边形CGEF的周长最小时,请你在图2中确定点E、F的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF周长的最小值      .

 

 

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线同侧有两点A、B,在直线上求一点C,使它到A、B之和最小.
精英家教网

查看答案和解析>>

同步练习册答案