【题目】已知:二次函数y=x2+bx+c经过原点,且当x=2时函数有最小值;直线AC解析式为y=kx-4,且与抛物线相交于B、C.
(1)求二次函数解析式;
(2)若S△AOB∶S△BOC=1:3,求直线AC的解析式;
(3)在(2)的条件下,点E为线段BC上一动点(不与B、C重合),过E作x轴的垂线交抛物线于F、交x轴于G,是否存在点E,使△BEF和△CGE相似?若存在,请求出所有点E的坐标;若不存在,请说明理由.
【答案】(1)y=x2-4x;(2)直线AC的解析式为y=x-4;(3)存在,E点坐标为E(3.-1)或E(2,-2 ) .
【解析】
(1)根据二次函数y=x2+bx+c经过原点可知c=0,当x=2时函数有最小值可知对称轴是x=2,故可求出b,即可求解;
(2)连接OB,OC,过点C作CD⊥y轴于D,过点B作BE⊥y轴于E,根据得到
,
,由EB∥DC,对应线段成比例得到
,再联立y=kx-4与y=x2-4x得到方程 kx-4=x2-4x,即x2-(k+4)x+4=0,求出x1,x2,根据x1,x2之间的关系得到关于k的方程即可求解;
(3)根据(1)(2)求出A,B,C的坐标,设E(m,m-4)(1<m<4)则G(m,0)、F(m,m2-4m),根据题意分∠EFB=90°和∠EBF=90°,分别找到图形特点进行列式求解.
解:(1)∵二次函数y=x2+bx+c经过原点,
∴c=0
∵当x=2时函数有最小值
∴,
∴b=-4,c=0,
∴y=x2-4x;
(2)如图,连接OB,OC,过点C作CD⊥y轴于D,过点B作BE⊥y轴于E,
∵
∴
∴
∵EB∥DC
∴
∵y=kx-4交y=x2-4x于B、C
∴kx-4=x2-4x,即x2-(k+4)x+4=0
∴,或
∵xB<xC
∴EB=xB=,DC=xC=
∴4=
解得 k=-9(不符题意,舍去)或k=1
∴k=1
∴直线AC的解析式为y=x-4;
(3)存在.理由如下:
由题意得∠EGC=90°,
∵直线AC的解析式为y=x-4
∴A(0,-4 ) ,C(4,0)
联立两函数得,解得
或
∴B(1,-3)
设E(m,m-4)(1<m<4)
则G(m,0)、F(m,m2-4m)
①如图,当∠EFB=90°,即CG//BF时,△BFE∽△CGE.
此时F点纵坐标与B点纵坐标相等.
∴F(m,-3)
即m2-4m=-3
解得m=1(舍去)或m=3
∴F(3,-3)
故此时E(3,-1)
②如图当∠EBF=90°,△FBE∽△CGE
∵C(4,0),A(0 ,4 )
∴OA=OC
∴∠GCE=45°=∠BEF=∠BFE
过B点做BH⊥EF,
则H(m,-3)∴BH=m-1
又∵∠GCE=45°=∠BEF=∠BFE
∴△BEF是等腰直角三角形,又BH⊥EF
∴EH=HF,EF=2BH
∴(m-4)- (m2-4m) =2(m-1)
解得m1=1(舍去)m2=2
∴E(2,-2)
综上,E点坐标为E(3.-1)或E(2,-2).
科目:初中数学 来源: 题型:
【题目】已知四边形内接于
,对角线
于
,连接
交
于点
.
(1)如图1,求证:;
(2)如图2,作于
,交
于
,连接
,求证:
;
(3)在(2)的条件下,连接,若
,
,
,
,求
长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】第二届“一带一路”国际合作高峰论坛将于2019年4月在北京举行.为了让恩施特产走出大山,走向世界,恩施一民营企业计划生产甲、乙两种商品共10万件,销住“一带一路”沿线国家和地区.已知3件甲种商品与2件乙种商品的销售收入相同,1件甲种商品比2件乙种商品的销售收入少600元.甲、乙两种商品的销售利润分别为120元和200元
(1)甲、乙两种商品的销售单价各多少元?
(2)市场调研表明:所有商品能全部售出,企业要求生产乙种商品的数量不超过甲种商品数量的,且甲、乙两种商品的销售总收入不低于3300万元,请你为该企业设计一种生产方案,使销售总利润最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了参加学校举行的传统文化知识竞赛,某班进行四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两幅不完整的统计图.优秀人数条形统计图
优秀率折线统计图
请根据以上两幅图,解答下列问题:
(1)该班总人数是________;
(2)根据计算,请你补全两幅统计图;
(3)观察补全后的统计图,写出一条你发现的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:
将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.
(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;
(2)你认为这个规则公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)当销售单价为多少元时,销售这种童装每月可获利1800元?
(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数.将骰子抛掷两次,掷第一次,将朝上一面的点数记为,掷第二次,将朝上一面的点数记为
,则点(
)落在直线
上的概率为:
A. B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点A,将点A向右平移1个单位长度,得到点B.直线y=x﹣3与x轴,y轴分别交于点C,D.
(1)求抛物线的对称轴;
(2)若点A与点D关于x轴对称,
①求点B的坐标;
②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E为 BC上的点,F为 CD边上的点,且AE=AF,AB=4,设EC=x,△AEF 的面积为y,则y与x之间的函数关系式是____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com