精英家教网 > 初中数学 > 题目详情
19.一只不透明的袋子中装有颜色分别为红、黄、蓝的球各一个,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,恰好是红球的概率为$\frac{1}{3}$;
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,通过树状图或表格列出所有等可能性结果,并求两次都是摸到红球的概率.

分析 (1)由红球的个数以及袋子中球的总数目即可求出搅匀后从中任意摸出1个球,恰好是红球的概率;
(2)化树状图得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率.

解答 解:
(1)∵一只不透明的袋子中装有颜色分别为红、黄、蓝的球各一个,
∴从中任意摸出1个球,恰好是红球的概率=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$;
(2)画树状图得:

∴P(两次都是摸到红球)=$\frac{1}{9}$.

点评 此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式.
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC由最小值?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.某单位招聘,总成绩由笔试的70%和面试的30%两部分组成.已知甲应聘者笔试x分,面试y分,乙应聘者笔试y分,面试x分,而他们的总成绩相差4分,则|x-y|的值为(  )
A.8B.10C.12D.16

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某花圃销售一批名贵花卉,平均每天可售出20盆,每盆盈利40元,为了增加盈利并尽快减少库存,花圃决定采取适当的降价措施,经调查发现,如果每盆花卉每降1元,花圃平均每天可多售出2盆.
(1)若花圃平均每天要盈利1200元,每盆花卉应降价多少元?
(2)每盆花卉降低多少元时,花圃平均每天盈利最多,是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,将斜边长为4,∠A为30°角的Rt△ABC绕点B顺时针旋转120°得到△A′C′B,弧$\widehat{AA′}$、$\widehat{CC′}$是旋转过程中A、C的运动轨迹,则图中阴影部分的面积为(  )
A.4π+2$\sqrt{3}$B.$\frac{16}{3}$π-2$\sqrt{3}$C.$\frac{16}{3}$π+2$\sqrt{3}$D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知二次函数y=a(x-1)(x-3)(a>0)的图象与x轴交于A、B两点(A左B右),与y轴交于C点(0,3).P为x轴下方二次函数y=a(x-1)(x-3)(a>0)图象上一点,P点横坐标为m.
(1)求a的值;
(2)若P为二次函数y=a(x-1)(x-3)(a>0)图象的顶点,求证:∠ACO=∠PCB;
(3)Q(m+n,y0)为二次函数y=a(x-1)(x-3)(a>0)图象上一点,且∠ACO=∠QCB,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知关于x的方程x2+(3-m)x+$\frac{{m}^{2}}{4}$=0没有实数根,则m的取值范围是m>$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:
(1)$\sqrt{0.04}$+$\root{3}{-27}$+$\sqrt{{(-3)}^{2}}$-(-1)2017
(2)$\sqrt{16}$-$\root{3}{64}$-$\sqrt{{(-5)}^{2}}$-|$\sqrt{3}$-2|.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E,D分别落在E′,D′点.已知∠AFC=76°,则∠CFD′等于(  )
A.15°B.25°C.28°D.31°

查看答案和解析>>

同步练习册答案