精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,△ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).

(1)在图中画出△ABC关于y轴对称的图形△A’B’C’;

(2)在图中x轴上作出一点P,使PA+PB的值最小;并写出点P的坐标.

【答案】(1)如图所示见解析;(2)如图所示见解析, 点P的坐标为(3,0).

【解析】

(1)根据关于y轴对称的点的坐标特征分别作出点ABC关于y轴的对称点A’,B’,C’,即可得到△A’B’C’;

2)将B点关于x轴对称得到B1,再连接AB1x轴的交点就是P.

1)如图所示;

2)如图所示;

P的坐标为(30

BB1关于x轴对称,连结AB1x轴于P,PB=PB1

此时PA+PB1的值最小,

设直线AB1的解析式为y=kx+b

B1(4-1),A(1,2)代入y=kx+b,,

解得k=-1b=3.

所以直线AB1的解析式为y=x+3

y=0, x+3=0,解得x=3

所以点P的坐标为(3,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读解题过程,回答问题.

如图,OC在∠AOB,AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.

:O点作射线OM,使点M,O,A在同一直线上.

因为∠MOD+BOD=90°,BOC+BOD=90°,所以∠BOC=MOD,

所以∠AOD=180°-BOC=180°-30°=150°.

(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?

(2)如果∠AOB=DOC=x°,AOD=y°,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠A=22.5°,CD=8cm,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C,D,E,F为⊙O的六等分点,动点P从圆心O出发,沿OE弧EFFO的路线做匀速运动,设运动的时间为t,∠BPD的度数为y,则下列图象中表示y与t之间函数关系最恰当的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
在数学课上,老师请同学思考如下问题:
请利用直尺和圆规确定圆中弧AB所在圆的圆心

小亮的作法如下:
如图:
① 在弧AB上任意取一点C,分别连接AC,BC
②分别作AC,BC的垂直平分线,两条垂线平分线交于O点,所以点O就是所求弧AB的圆心

老师说:“小亮的作法正确.”
请你回答:小亮的作图依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,点DE是边BC上的两点,且AB=BEAC=CD.

(1)若∠BAC =90°,求∠DAE的度数;

(2)若∠BAC=120°,直接写出∠DAE的度数

(3)设∠BAC=α,∠DAE=β,猜想α与β的之间数量关系(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A=2x2+3xy﹣2x﹣1B=﹣x2+xy﹣1

1)求3A+6B

2)若3A+6B的值与x无关,求y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.

(1)求证:COM∽△CBA;

(2)求线段OM的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,按以下步骤作图:

①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;

②分别以DE为圆心,以大于DE的同样长为半径作弧,两弧交于点F

③作射线BFACG.

如果BG=CG,∠A=60°,那么∠ACB的度数为____________

查看答案和解析>>

同步练习册答案